Level Set Method in a Finite Element Setting

John Shopple

University of California, San Diego

November 6, 2007

2 Solute-Solvent Model

3 Reinitialization

Types of problems

- Geometric based motion
 - Motion based on curvature
 - Normal direction motion
 - Simple "constant" motion
- Physical based motion
 - Fluid dynamics
 - Two-phase flow
 - Combustion
 - Liquid-gas interactions
 - Biology
 - Biomolecular surfaces
 - Membranes
 - Material science
 - Solidification
 - Epitaxial growth of thin films

Front Tracking Methods

- Place markers on interface
- Calculate velocity for each marker
- Propagate markers one time step
- Check for topological changes of interfaces
 - add/remove markers
 - split/join interfaces if necessary
- Go to step 2

Front Tracking Methods

Place markers on interface

- 2 Calculate velocity for each marker
- Propagate markers one time step
- Check for topological changes of interfaces
 - add/remove markers
 - split/join interfaces if necessary
- Go to step 2

Front Tracking Methods

- Place markers on interface
- Calculate velocity for each marker
- Propagate markers one time step
- Check for topological changes of interfaces
 - add/remove markers
 - split/join interfaces if necessary
- Go to step 2

Front Tracking Methods

- Place markers on interface
- Calculate velocity for each marker
- Propagate markers one time step
 - Check for topological changes of interfaces
 - add/remove markers
 - split/join interfaces if necessary
- Go to step 2

Front Tracking Methods

- Place markers on interface
- Calculate velocity for each marker
- Propagate markers one time step
- Check for topological changes of interfaces
 - add/remove markers
 - split/join interfaces if necessary

Go to step 2

Front Tracking Methods

- Place markers on interface
- Calculate velocity for each marker
- Propagate markers one time step
- Check for topological changes of interfaces
 - add/remove markers
 - split/join interfaces if necessary
- Go to step 2

Conclusion

Level Set Method

The interface is represented as the zero level set of a function

 $\phi(x, y, t) = 0$

Topological changes will occur naturally as time progresses.

Let (x(t), y(t)) parameterize a particle that stays on the moving interface.

• $\phi(x(0), y(0), t = 0) = 0$

•
$$\phi(x(1), y(1), t = 1) = 0$$

•
$$\phi(x(2), y(2), t = 2) = 0$$

Let (x(t), y(t)) parameterize a particle that stays on the moving interface.

- $\phi(x(0), y(0), t = 0) = 0$
- $\phi(x(1), y(1), t = 1) = 0$

•
$$\phi(x(2), y(2), t = 2) = 0$$

Let (x(t), y(t)) parameterize a particle that stays on the moving interface.

- $\phi(x(0), y(0), t = 0) = 0$
- $\phi(x(1), y(1), t = 1) = 0$

•
$$\phi(x(2), y(2), t = 2) = 0$$

Let (x(t), y(t)) parameterize a particle that stays on the moving interface.

- $\phi(x(0), y(0), t = 0) = 0$
- $\phi(x(1), y(1), t = 1) = 0$

•
$$\phi(x(2), y(2), t = 2) = 0$$

$$\begin{aligned} \frac{d\phi}{dt} &= \phi_t + \phi_x x'(t) + \phi_y y'(t) \\ &= \phi_t + \nabla \phi \cdot (x'(t), y'(t)) \\ &= \phi_t + \nabla \phi \cdot \mathbf{V} = 0 \end{aligned}$$

Level Set Evolution Equation

For externally generated velocity fields:

$$\phi_t + \nabla \phi \cdot \mathbf{V} = 0$$

For internally generated velocity fields:

$$\phi_t + |\nabla \phi| V_n = 0$$

where

$$V_n = \mathbf{V} \cdot \mathbf{n} = \mathbf{V} \cdot \frac{\nabla \phi}{|\nabla \phi|}$$

Interface = $\Gamma(t) = \{(x, y) \mid \phi(x, y, t) = 0\}$

Level Set Method

Reinitialization

Basic Types of Interface Motion

- Vector field V
- Scalar field V_n giving speed in level sets' normal direction
- V_n proportional to level set curvature $\kappa = \nabla \cdot \left(\frac{\nabla \phi}{|\nabla \phi|} \right)$

Level Set Method

Local Method to Solve Level Set Equation

Evolution equation

 $\phi_t + V_n |\nabla \phi| = 0$

- Approximate |∇φ| at each vertex v_i by the average of |∇φ| over a patch around v_i
- Solution Use a Runga-Kutta type method using the values of V_n at each vertex.

Conclusion

Lennard-Jones Potential

• Minimum: $U(r = \sigma \sqrt[6]{2} \approx 1.12\sigma) = -\varepsilon$

- r > σ attracts
- $r < \sigma$ repels

Conclusion

Solute-Solvent Model

- Molecules consist of atoms at locations x₁,..., x_N
- Solvent region Ω_w
- Solute region Ω_m
- A solute-solvent interface Γ

Conclusion

Solute-Solvent Model

- Molecules consist of atoms at locations x₁,..., x_N
- Solvent region Ω_w
- Solute region Ω_m
- A solute-solvent interface Γ

A free energy model

$$G[\Gamma; \mathbf{x}_1, \dots, \mathbf{x}_N] = \int_{\Gamma} \gamma \, dS + \rho_w \sum_{i=1}^N \int_{\Omega_w} U_{sw}(|\mathbf{x} - \mathbf{x}_i|) \, dV$$

Algorithm

Define a regular grid

- 2 Define atoms (with radii σ_i)
- Construct initial surface
- At each time step:
 - () body-fit mesh to interface Γ
 - calculate L-J potential on Γ
 - **3** calculate curvature κ
 - \bigcirc on Γ let

$$V_n = -\gamma_0 \kappa + \rho_0 \sum_{i=1}^N U(|\mathbf{x} - \mathbf{x}_i|)$$

- Sector V_n to regular gric
- evolve LS function on regular grid

Algorithm

- Define a regular grid
- 2 Define atoms (with radii σ_i)
- Construct initial surface
- At each time step:
 - () body-fit mesh to interface Γ
 - calculate L-J potential on I
 - **3** calculate curvature κ
 - \bigcirc on Γ let

$$V_n = -\gamma_0 \kappa + \rho_0 \sum_{i=1}^N U(|\mathbf{x} - \mathbf{x}_i|)$$

- Sector V_n to regular gric
- evolve LS function on regular grid
- Stop when free energy stops decreasing

Algorithm

- Define a regular grid
- 2 Define atoms (with radii σ_i)
- Construct initial surface
- At each time step:
 - body-fit mesh to interface Γ
 - calculate L-J potential on I
 - **3** calculate curvature κ
 - () on Γ let

$$V_n = -\gamma_0 \kappa + \rho_0 \sum_{i=1}^N U(|\mathbf{x} - \mathbf{x}_i|)$$

- Sector V_n to regular gric
- evolve LS function on regular grid
- Stop when free energy stops decreasing

Algorithm

- Define a regular grid
- 2 Define atoms (with radii σ_i)
- Construct initial surface
- At each time step:
 - body-fit mesh to interface Γ
 - **2** calculate L-J potential on Γ
 - Solution calculate curvature κ
 - On Γ let

$$V_n = -\gamma_0 \kappa + \rho_0 \sum_{i=1}^N U(|\mathbf{x} - \mathbf{x}_i|)$$

- **(3)** extend V_n to regular grid
- evolve LS function on regular grid

Stop when free energy stops decreasing

Algorithm

- Define a regular grid
- 2 Define atoms (with radii σ_i)
- Construct initial surface
- At each time step:
 - body-fit mesh to interface Γ
 - **2** calculate L-J potential on Γ
 - Solution calculate curvature κ
 - On Γ let

$$V_n = -\gamma_0 \kappa + \rho_0 \sum_{i=1}^N U(|\mathbf{x} - \mathbf{x}_i|)$$

- **(3)** extend V_n to regular grid
- evolve LS function on regular grid

Stop when free energy stops decreasing

Algorithm

- Define a regular grid
- 2 Define atoms (with radii σ_i)
- Construct initial surface
- At each time step:
 - body-fit mesh to interface Γ
 - 2 calculate L-J potential on Γ
 - Solution calculate curvature κ
 - On Γ let

$$V_n = -\gamma_0 \kappa + \rho_0 \sum_{i=1}^N U(|\mathbf{x} - \mathbf{x}_i|)$$

- **(3)** extend V_n to regular grid
- evolve LS function on regular grid
- Stop when free energy stops decreasing

Body Fitted Meshes

- Refine mesh into interior and exterior regions.
- Add edges at zero level set
- Add edges to make conforming mesh

Body Fitted Meshes

- Can calculate length of interface easily
- Explicitly separates interior and exterior
- May need extra refinement in some applications

Reinitialization

What, when, and why?

What is reinitialization?

Redefining the level set function to make it nicer without moving the location of the interface (too much).

What is reinitialization?

Redefining the level set function to make it nicer without moving the location of the interface (too much).

Why reinitialize?

Over time the level set function can become flat, causing errors in calculations of certain quantities.

What is reinitialization?

Redefining the level set function to make it nicer without moving the location of the interface (too much).

Why reinitialize?

Over time the level set function can become flat, causing errors in calculations of certain quantities.

When do we reinitialize?

Often enough that the level set function never becomes "bad". Not so often to introduce more errors.

"Ideal" Reinitialization

Doesn't move the interface

- $|\nabla \phi| \approx 1$ (especially near the interface)
- Efficient
- Preserves key quantities near the interface (curvature, normal)
- Signed distance function?

"Ideal" Reinitialization

Doesn't move the interface

- $|\nabla \phi| \approx 1$ (especially near the interface)
- Efficient
- Preserves key quantities near the interface (curvature, normal)
- Signed distance function?

"Ideal" Reinitialization

- Doesn't move the interface
- $|\nabla \phi| \approx 1$ (especially near the interface)
- Efficient
- Preserves key quantities near the interface (curvature, normal)
- Signed distance function?

"Ideal" Reinitialization

- Doesn't move the interface
- $|\nabla \phi| \approx 1$ (especially near the interface)
- Efficient
- Preserves key quantities near the interface (curvature, normal)
- Signed distance function?

"Ideal" Reinitialization

- Doesn't move the interface
- $|\nabla \phi| \approx 1$ (especially near the interface)
- Efficient
- Preserves key quantities near the interface (curvature, normal)
- Signed distance function?

Conclusion

Reinitialization Examples

A model starting problem

Level Set Method

Solute-Solvent Model

Reinitialization

Conclusion

Reinitialization, Poisson's Equation Method 1

Method 1

Body-fit mesh to interface

Solve

$$\Delta \phi = G_{-} \quad \text{in } \Omega_{-}$$
$$\Delta \phi = G_{+} \quad \text{in } \Omega_{+}$$
$$\phi = 0 \quad \text{on } \Gamma$$
$$\frac{\partial \phi}{\partial n} = 0 \quad \text{on } \partial \Omega$$

Solute-Solvent Model

Reinitialization

Conclusion

Reinitialization, Poisson's Equation Method 1

$\Delta \phi = 1$	in Ω_{-}
$\Delta\phi=-1$	in Ω_+
$\phi = 0$	on Γ
$\frac{\partial \phi}{\partial n} = 0$	on $\partial \Omega$

Conclusion

Reinitialization, Poisson's Equation Method 1

Level Set Method

Solute-Solvent Model

Reinitialization

Conclusion

Reinitialization, Poisson's Equation Method 2

Method 2

- Body-fit mesh to interface
- Solve

$$\begin{split} \Delta \phi &= G_- & \text{ in } \Omega_- \\ \Delta \phi &= 0 & \text{ in } \Omega_+ \\ \phi &= 0 & \text{ on } \Gamma \\ \phi &= 1 & \text{ on } \partial \Omega \end{split}$$

Conclusion

Reinitialization, Poisson's Equation Method 2

$\Delta \phi = 10$	in Ω_{-}
$\Delta \phi = 0$	in Ω_+
$\phi = 0$	on Γ
$\phi = 1$	on $\partial \Omega$

Conclusion

Reinitialization, Poisson's Equation Method 2

Constrained Gradient Jump Across Interface Method

Constraint

Add additional constraint

$$\left[\frac{\partial\phi}{\partial n}\right]_e = 0$$

for all new body-fitted edges *e*, so unrefinement won't move interface.

- Constraint is enforced by basis test functions along interface
- Overdetermined system can only be solved in a least squares way
- Constraint can be weighted more

Constrained Gradient Jump Across Interface Method

Constraint

Add additional constraint

$$\left[\frac{\partial\phi}{\partial n}\right]_e = 0$$

for all new body-fitted edges *e*, so unrefinement won't move interface.

Constraint is enforced by basis test functions along interface

Overdetermined system can only be solved in a least squares way

Constraint can be weighted more

Constrained Gradient Jump Across Interface Method

Constraint

Add additional constraint

$$\left[\frac{\partial\phi}{\partial n}\right]_e = 0$$

for all new body-fitted edges *e*, so unrefinement won't move interface.

- Constraint is enforced by basis test functions along interface
- Overdetermined system can only be solved in a least squares way
- Constraint can be weighted more

Constrained Gradient Jump Across Interface Method

Constraint

Add additional constraint

$$\left[\frac{\partial\phi}{\partial n}\right]_e = 0$$

for all new body-fitted edges *e*, so unrefinement won't move interface.

- Constraint is enforced by basis test functions along interface
- Overdetermined system can only be solved in a least squares way
- Constraint can be weighted more

Solute-Solvent Model

Reinitialization

Conclusion

Constrained Gradient Jump Comparison

John Shopple

Level Set Method in a Finite Element Setting

Solute-Solvent Model Examples

2 atom systems: 1.6σ , 2.0σ , 2.4σ , 2.8σ .

Conclusion

Future work:

- Implement 3 dimensional algorithm
- Speed up algorithm (various ways)
- Add more terms to free energy functional