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A general Schrödinger equation

We consider a general 1D Schrödinger equation in the form of

iε
∂ψε

∂t
= −ε

2

2

∂

∂x

(
b
(x

ε

) ∂ψε
∂x

)
+ V

(x

ε

)
ψε + Ve(x)ψε, (1)

ψε(0, x) = exp(
iS0

ε
)f (x ,

x

ε
), (2)

where

b(y + 2π) = b(y) > 0, V (y + 2π) = V (y), f (x , y + 2π) = f (x , y).
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Applications and difficulties

Applications:

Fundamental models in solid-state physics

Models for motion of electrons in small-scale periodic potentials

Difficulties:

Solutions become highly oscillatory in semiclassical regime when
ε� 1.

Direct simulation is unrealistic.

Approximation models are needed.
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Bloch band structure

The Schrödinger equation

iε∂tψ = −ε
2

2
∂x

(
b
(x

ε

)
∂xψ

)
+ V

(x

ε

)
ψ + Ve(x)ψ,

ψ(0, x) = exp

(
iS0

ε

)
f
(

x ,
x

ε

)
,

where the lattice potential V and b > 0 are 2π− periodic functions
and Ve is a given smooth function.

A standard WKB ψε = Aε(t, x) exp(iS(t, x)/ε) fails:

St + b
(x

ε

) S2
x

2
+ V

(x

ε

)
+ Ve(x) = 0.
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Scale separation
Let y := x/ε, the electron coordinate, be independent of space
variable x , then the Schrödinger equation becomes

iε∂tψ =

[
−1

2
(∂y + ε∂x) (b (y) (∂y + ε∂x)) + V (y) + Ve(x)

]
ψ.

We now look for approximate solutions of the form

ψ(t, x , y ; ε) = e iS(t,x)/ε [A0(t, x , y) + εA1(t, x , y) + · · · ] .

Substitution, and collecting terms which are the same order in ε:

O(1) 0 = − [St + H(k(t, x), y) + Ve(x)] A0, k(t, x) = Sx(t, x),

O(ε) 0 = iLA0 − [St + H(k(t, x), y) + Ve(x)] A1,

H(k, y) = −1

2
(∂y + ik)[b(y)(∂y + ik)] + V (y), (3)

L = ∂t −
i

2
[(∂y + ik)[b(y)∂x ] + ∂x [b(y)(∂y + ik)]] . (4)
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Band WKB system and Bloch waves

(Bloch waves) For smooth V (y) and b(y) > 0, H(k , y) admits a
complete set of (normalized) eigenfunctions zn for each fixed k :

H(k , y)zn(k, y) = En(k)zn(k, y), (5)

zn(k , y + 2π) = zn(k , y), k ∈ B, y ∈ R.

Here k is confined to the reciprocal cell B = [−0.5, 0.5].

The O(1) term vanishes by setting, on each band,

A0(t, x , y) = a(t, x)z(k(t, x), y)

and choosing
St + E (Sx) + Ve(x) = 0
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Band dynamics

Solvability of the O(ε)-equation leads to

∂ta +
1

2
a∂xE ′(k(t, x)) + ∂xaE ′(k(t, x)) + βa = 0, Re(β) = 0

So that the band density ρ = |a|2 satisfies

ρt + (E ′(Sx)ρ)x = 0.

The classical theory asserts that (before singularity formation) the
wave function can be recovered by a superposition of waves on each
band

ψε(t, x) =
∞∑

n=1

an(t, x)zn

(
∂xSn,

x

ε

)
e iSn(t,x)/ε +O(ε).

Ref: [1] Bensoussan, Lions and Papanicolaou (1978)(before caustics)
[3] Gosse and Markowich (2004) (computing multi-valued solutions)
[2] Dimassi, Guillot and Ralston (2006)(Gaussian beam for Bloch electrons)
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Band based level set formulation on each band

∂tSn + En(∂xSn) + Ve(x) = 0,

∂tρn + ∂x(E ′n(∂xSn)ρn) = 0.

Let {k , φ(t, x , k) = 0} contains all multi-valued velocity uj
n(t, x), then

φ is proven to satisfy

φt + E ′n(k)φx − V ′e(x)φk = 0, (6)

φ(0, x , k) = k − ∂xS0(x), (7)

with E ′n(k) is the associated band energy.
The corresponding multi-valued density can be evaluated as

ρj
n ∈

{
f

|φk |

∣∣∣ φ(t, x , k) = 0

}
, ∀(t, x) ∈ R+ × R

where

ft + E ′n(k)fx − V ′e(x)fk = 0, f (0, x , p) = ρ0(x). (8)
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The algorithm

This is a hybrid method, the solution process is split into several steps:

Solve Bloch eigenvalue problem (Fourier method) to obtain Bloch
waves {(En(k), zn(k , y))}, independent of time and initial conditions

Initial band decomposition, and construct initial level set functions

Evolve the level set equation for φ and the equation for f

Obtain band velocities/densities

Evaluate position density over a sample set of bands
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Initial band configuration

We now discuss the recovery of the initial band density ρn(0, x) from the
given data

ψε0

(
x ,

x

ε

)
= g

(
x ,

x

ε

)
exp(iS0(x)/ε).

one needs only to decompose g as follows:

g(x , y) =
∞∑

n=1

an(x)zn(∂xS0, y),

where

an(x) =

∫ 2π

0
g(x , y)z̄n(∂xS0, y)dy .

The desired initial band density can be taken as

ρn =
1

2π
|an(x)|2.
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Position density in each band
The wave field on each band is calculated as

ψεn(t, x , y) =

∫
ψε(t, x , y , k)δ(φ) det(φk)dk =

Kn∑
j=1

∫
ψεδ(k − un

j (t, x))dk

=
Kn∑
j=1

ψε(t, x , y , uj
n) =

Kn∑
j=1

aj
nzn

(
uj
n, y
)

exp

(
iS j

n

ε

)
.

The averaged band density is

ρ̄εn(t, x) =
1

2π

∫ 2π

0
|ψεn(t, x , y)|2dy .

Lemma

Away from caustics it holds

ρ̄εn(t, x) ⇀
1

2π

Kn∑
j=1

|aj
n|2 as ε→ 0.
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Total density
We now consider all Bloch bands. Since the underlying equation is linear,
the wave field over all bands is simply a superposition of wave filed on
each band

ψε(t, x , y) =
∞∑

n=1

Kn∑
j=1

aj
nzn

(
uj
n, y
)

exp

(
iS j

n

ε

)
.

Lemma

Let the total density be defined as

ρε(t, x) =
1

2π

∫ 2π

0
|ψε(t, x , y)|2dy .

Then away from caustics, we have

ρε(t, x) ⇀
1

2π

∑
n

Kn∑
j=1

|aj
n|2 as ε→ 0.
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Numerical examples 1

b(x/ε) ≡ 1,Ve ≡ 0 and V (x/ε) = cos(x/ε),

ψε(0, x) = exp

(
−(x − π)2

2

)
exp

(
−0.3i cos(x)

ε

)
.

Initial Decomposition

# of bands 4 6 8 10 12
L1 error 0.017008 0.008111 0.008101 0.008101 0.008101

Table: L1 error table for initial Bloch decomposition with 101× 101 grid points
and 101 eigen-matrix.
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Comparison with 2nd 2D Strang Splitting (SP2) method

Figure: Total averaged density with 8 bands when t = 0.1
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Figure: Total averaged density with 8 bands when t = 0.3
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Figure: Total averaged density with 8 bands when t = 0.4

Z. Wang (UCSD) the Schrödinger equation, Bloch, level set Kinetic FRG Workshop 17 / 27



Numerical example 2

b(x/ε) ≡ 1,V (x/ε) = cos(x/ε) and Ve = 0,

ψε(0, x) = e
−0.3i cos(x)

ε e−(x−π)2zn(0.3 sin(x), x/ε), n = 3, 4.

In this example, we concentrate the density on a single band to observe
the phenomenon:

n=3: Finite time caustic formation
n=4: Rarefaction wave
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n = 3, t = 1

Figure: Multivalued velocity and averaged density on band 3 when t = 1
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n = 3, t = 2

Figure: Multivalued velocity and averaged density on band 3 when t = 2
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n = 4, t = 0.1

Figure: Multivalued velocity and averaged density on band 4 when t = 0.1
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n = 4, t = 0.5

Figure: Multivalued velocity and averaged density on band 4 when t = 0.5
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Numerical Examples 3: general b

Here we test a general b(y) = 3
2 + sin (y), V (y) = cos(y), Ve = 0, and

ψε(0, x) = exp

(
−(x − π)2

2

)
exp

(
−0.3i cos(x)

ε

)
.

Initial Decomposition:

# of bands 4 6 8 10 12
L1 error 0.015661 0.007301 0.007233 0.007233 0.007233

Table: L1 error table for initial Bloch decomposition with 101× 101 grid points
and 101 eigen-matrix.
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General coefficient function b

Figure: Total averaged density with 10 bands at different times
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Summary and discussions

Summary

Bloch decomposition is needed in periodic media

Bloch band based level set method to capture the multi-valued
solutions

Proved superposition in density by weak convergence

Numerical validation

Discussion:

Caustics, e.g., work by Jin et al.

Recovering ψε with proper phase shift from φ and f

Computational cost, local level set method
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Remark 1: WKB higher order terms and multivalued
solutions

In the case of b(x/ε) = 1 and V (x/ε) = 0, WKB approximation leads to

St + H(x ,Sx) =
ε2

2

(A0)xx

A0
, H(x , p) =

1

2
|p|2 + Ve(x),

ρt + (ρSx)x = 0.

However, Hamilton-Jacobi equation develops finite time singularity in
general and the disispative term on right generates oscillation.

Conventional viscosity solution is not appropriate, instead
multi-valued solutions have to be considered.
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Remark 2: Gaussian beam construction for caustics

Gaussian beam ansatz in Eulerian version (phase space) is no longer
an asymptotic solution,

How to superpose them correctly for the underlying equation?
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