A Bloch Band Based Level Set Method for Computing the Semiclassical Limit of Schrödinger Equations

Zhongming Wang

Department of Mathematics University of California, San Diego

Kinetic FRG Young Researchers Workshop March 5, 2009 Joint work with Prof. Hailiang Liu

2 Bloch Band Structure and Level Set Method

3 Numerical Examples

A general Schrödinger equation

We consider a general 1D Schrödinger equation in the form of

$$i\epsilon \frac{\partial \psi^{\epsilon}}{\partial t} = -\frac{\epsilon^2}{2} \frac{\partial}{\partial x} \left(b\left(\frac{x}{\epsilon}\right) \frac{\partial \psi^{\epsilon}}{\partial x} \right) + V\left(\frac{x}{\epsilon}\right) \psi^{\epsilon} + V_e(x)\psi^{\epsilon}, \qquad (1)$$

$$\psi^{\epsilon}(0,x) = \exp(\frac{iS_0}{\epsilon})f(x,\frac{x}{\epsilon}), \qquad (2)$$

where

$$b(y+2\pi) = b(y) > 0, V(y+2\pi) = V(y), f(x,y+2\pi) = f(x,y).$$

Applications and difficulties

Applications:

- Fundamental models in solid-state physics
- Models for motion of electrons in small-scale periodic potentials

Applications and difficulties

Applications:

- Fundamental models in solid-state physics
- Models for motion of electrons in small-scale periodic potentials

Difficulties:

- Solutions become highly oscillatory in semiclassical regime when $\epsilon \ll 1.$
- Direct simulation is unrealistic.
- Approximation models are needed.

Bloch band structure

• The Schrödinger equation

$$\begin{split} i\epsilon\partial_t\psi &= -\frac{\epsilon^2}{2}\partial_x\left(b\left(\frac{x}{\epsilon}\right)\partial_x\psi\right) + V\left(\frac{x}{\epsilon}\right)\psi + V_e(x)\psi,\\ \psi(0,x) &= \exp\left(\frac{iS_0}{\epsilon}\right)f\left(x,\frac{x}{\epsilon}\right), \end{split}$$

where the lattice potential V and b > 0 are 2π - periodic functions and V_e is a given smooth function.

• A standard WKB $\psi^{\epsilon} = A^{\epsilon}(t, x) \exp(iS(t, x)/\epsilon)$ fails:

$$S_t + b\left(\frac{x}{\epsilon}\right)\frac{S_x^2}{2} + V\left(\frac{x}{\epsilon}\right) + V_e(x) = 0.$$

Scale separation

 Let y := x/ε, the electron coordinate, be independent of space variable x, then the Schrödinger equation becomes

 $i\epsilon\partial_t\psi = \left[-\frac{1}{2}(\partial_y + \epsilon\partial_x)(b(y)(\partial_y + \epsilon\partial_x)) + V(y) + V_e(x)\right]\psi.$

Scale separation

Let y := x/ε, the electron coordinate, be independent of space variable x, then the Schrödinger equation becomes

$$i\epsilon\partial_t\psi = \left[-\frac{1}{2}(\partial_y + \epsilon\partial_x)(b(y)(\partial_y + \epsilon\partial_x)) + V(y) + V_e(x)\right]\psi.$$

• We now look for approximate solutions of the form

$$\psi(t,x,y;\epsilon) = e^{iS(t,x)/\epsilon} \left[A_0(t,x,y) + \epsilon A_1(t,x,y) + \cdots\right].$$

Scale separation

Let y := x/ε, the electron coordinate, be independent of space variable x, then the Schrödinger equation becomes

$$i\epsilon\partial_t\psi = \left[-\frac{1}{2}(\partial_y + \epsilon\partial_x)(b(y)(\partial_y + \epsilon\partial_x)) + V(y) + V_e(x)\right]\psi.$$

- We now look for approximate solutions of the form $\psi(t, x, y; \epsilon) = e^{iS(t,x)/\epsilon} \left[A_0(t, x, y) + \epsilon A_1(t, x, y) + \cdots\right].$
- Substitution, and collecting terms which are the same order in ϵ :

$$\begin{array}{ll} O(1) & 0 = -\left[S_t + H(k(t,x),y) + V_e(x)\right] A_0, & k(t,x) = S_x(t,x), \\ O(\epsilon) & 0 = i L A_0 - \left[S_t + H(k(t,x),y) + V_e(x)\right] A_1, \end{array}$$

$$H(k,y) = -\frac{1}{2}(\partial_y + ik)[b(y)(\partial_y + ik)] + V(y), \qquad (3)$$

$$L = \partial_t - \frac{i}{2} \left[(\partial_y + ik) [b(y)\partial_x] + \partial_x [b(y)(\partial_y + ik)] \right]. \tag{4}$$

Band WKB system and Bloch waves

(Bloch waves) For smooth V(y) and b(y) > 0, H(k, y) admits a complete set of (normalized) eigenfunctions z_n for each fixed k:

$$H(k,y)z_n(k,y) = E_n(k)z_n(k,y),$$
(5)

$$z_n(k, y+2\pi) = z_n(k, y), \quad k \in \mathcal{B}, \quad y \in \mathbb{R}.$$

Here k is confined to the reciprocal cell $\mathcal{B} = [-0.5, 0.5]$.

• The O(1) term vanishes by setting, on each band,

$$A_0(t,x,y) = a(t,x)z(k(t,x),y)$$

and choosing

 $S_t + E(S_x) + V_e(x) = 0$

Band dynamics

• Solvability of the $O(\epsilon)$ -equation leads to

$$\partial_t a + \frac{1}{2} a \partial_x E'(k(t,x)) + \partial_x a E'(k(t,x)) + \beta a = 0, \quad Re(\beta) = 0$$

• So that the band density $\rho = |a|^2$ satisfies

 $\rho_t + (E'(S_x)\rho)_x = 0.$

 The classical theory asserts that (before singularity formation) the wave function can be recovered by a superposition of waves on each band

$$\psi^{\epsilon}(t,x) = \sum_{n=1}^{\infty} a_n(t,x) z_n\left(\partial_x S_n, \frac{x}{\epsilon}\right) e^{iS_n(t,x)/\epsilon} + \mathcal{O}(\epsilon).$$

8 / 27

Ref: [1] Bensoussan, Lions and Papanicolaou (1978)(before caustics)
[3] Gosse and Markowich (2004) (computing multi-valued solutions)
[2] Dimassi, Guillot and Ralston (2006)(Gaussian beam for Bloch electrons)
Z. Wang (UCSD) the Schrödinger equation, Bloch, level set Kinetic FRG Workshop

Band based level set formulation on each band

$$\begin{aligned} \partial_t S_n + E_n(\partial_x S_n) + V_e(x) &= 0, \\ \partial_t \rho_n + \partial_x (E'_n(\partial_x S_n)\rho_n) &= 0. \end{aligned}$$

э

Band based level set formulation on each band

$$\begin{aligned} \partial_t S_n + E_n(\partial_x S_n) + V_e(x) &= 0, \\ \partial_t \rho_n + \partial_x (E'_n(\partial_x S_n)\rho_n) &= 0. \end{aligned}$$

• Let $\{k, \phi(t, x, k) = 0\}$ contains all multi-valued velocity $u'_n(t, x)$, then ϕ is proven to satisfy

$$\phi_t + E'_n(k)\phi_x - V'_e(x)\phi_k = 0, \qquad (6)$$

$$\phi(0,x,k) = k - \partial_x S_0(x), \tag{7}$$

with $E'_n(k)$ is the associated band energy.

Band based level set formulation on each band

$$\begin{aligned} \partial_t S_n + E_n(\partial_x S_n) + V_e(x) &= 0, \\ \partial_t \rho_n + \partial_x (E'_n(\partial_x S_n)\rho_n) &= 0. \end{aligned}$$

• Let $\{k, \phi(t, x, k) = 0\}$ contains all multi-valued velocity $u_n^j(t, x)$, then ϕ is proven to satisfy

$$\phi_t + E'_n(k)\phi_x - V'_e(x)\phi_k = 0, \qquad (6)$$

$$\phi(0, x, k) = k - \partial_x S_0(x), \tag{7}$$

with $E'_n(k)$ is the associated band energy.

• The corresponding multi-valued density can be evaluated as

$$ho_n^j \in \left\{ rac{f}{|\phi_k|} \Big| \quad \phi(t,x,k) = 0
ight\}, \quad \forall (t,x) \in R^+ imes R$$

where

$$f_t + E'_n(k)f_x - V'_e(x)f_k = 0, \quad f(0, x, p) = \rho_0(x).$$
(8)

This is a hybrid method, the solution process is split into several steps:

 Solve Bloch eigenvalue problem (Fourier method) to obtain Bloch waves {(E_n(k), z_n(k, y))}, independent of time and initial conditions

- Solve Bloch eigenvalue problem (Fourier method) to obtain Bloch waves {(E_n(k), z_n(k, y))}, independent of time and initial conditions
- Initial band decomposition, and construct initial level set functions

- Solve Bloch eigenvalue problem (Fourier method) to obtain Bloch waves {(E_n(k), z_n(k, y))}, independent of time and initial conditions
- Initial band decomposition, and construct initial level set functions
- Evolve the level set equation for ϕ and the equation for f

- Solve Bloch eigenvalue problem (Fourier method) to obtain Bloch waves {(E_n(k), z_n(k, y))}, independent of time and initial conditions
- Initial band decomposition, and construct initial level set functions
- Evolve the level set equation for ϕ and the equation for f
- Obtain band velocities/densities

- Solve Bloch eigenvalue problem (Fourier method) to obtain Bloch waves {(E_n(k), z_n(k, y))}, independent of time and initial conditions
- Initial band decomposition, and construct initial level set functions
- Evolve the level set equation for ϕ and the equation for f
- Obtain band velocities/densities
- Evaluate position density over a sample set of bands

Initial band configuration

We now discuss the recovery of the initial band density $\rho_n(0, x)$ from the given data

$$\psi_0^{\epsilon}\left(x,\frac{x}{\epsilon}\right) = g\left(x,\frac{x}{\epsilon}\right) \exp(iS_0(x)/\epsilon).$$

one needs only to decompose g as follows:

$$g(x,y) = \sum_{n=1}^{\infty} a_n(x) z_n(\partial_x S_0, y),$$

where

$$a_n(x) = \int_0^{2\pi} g(x, y) \bar{z}_n(\partial_x S_0, y) dy.$$

The desired initial band density can be taken as

$$\rho_n=\frac{1}{2\pi}|a_n(x)|^2.$$

Position density in each band

The wave field on each band is calculated as

$$\begin{split} \psi_n^{\epsilon}(t,x,y) &= \int \psi^{\epsilon}(t,x,y,k) \delta(\phi) \det(\phi_k) dk = \sum_{j=1}^{K_n} \int \psi^{\epsilon} \delta(k-u_j^n(t,x)) dk \\ &= \sum_{j=1}^{K_n} \psi^{\epsilon}(t,x,y,u_n^j) = \sum_{j=1}^{K_n} a_n^j z_n \left(u_n^j,y\right) \exp\left(\frac{iS_n^j}{\epsilon}\right). \end{split}$$

The averaged band density is

$$\bar{\rho}_n^{\epsilon}(t,x) = \frac{1}{2\pi} \int_0^{2\pi} |\psi_n^{\epsilon}(t,x,y)|^2 dy.$$

Position density in each band

The wave field on each band is calculated as

$$\begin{split} \psi_n^{\epsilon}(t,x,y) &= \int \psi^{\epsilon}(t,x,y,k) \delta(\phi) \det(\phi_k) dk = \sum_{j=1}^{K_n} \int \psi^{\epsilon} \delta(k-u_j^n(t,x)) dk \\ &= \sum_{i=1}^{K_n} \psi^{\epsilon}(t,x,y,u_n^j) = \sum_{i=1}^{K_n} a_n^j z_n \left(u_n^j,y\right) \exp\left(\frac{iS_n^j}{\epsilon}\right). \end{split}$$

i=1

i=1The averaged band density is

$$\bar{\rho}_n^{\epsilon}(t,x) = \frac{1}{2\pi} \int_0^{2\pi} |\psi_n^{\epsilon}(t,x,y)|^2 dy.$$

Lemma

Away from caustics it holds

$$ar{
ho}^\epsilon_n(t,x)
ightarrow rac{1}{2\pi} \sum_{j=1}^{K_n} |a^j_n|^2 \quad as \quad \epsilon o 0.$$

12 / 27

Total density

We now consider all Bloch bands. Since the underlying equation is linear, the wave field over all bands is simply a superposition of wave filed on each band

$$\psi^{\epsilon}(t, x, y) = \sum_{n=1}^{\infty} \sum_{j=1}^{K_n} a_n^j z_n \left(u_n^j, y \right) \exp\left(\frac{iS_n^j}{\epsilon}\right).$$

Total density

We now consider all Bloch bands. Since the underlying equation is linear, the wave field over all bands is simply a superposition of wave filed on each band

$$\psi^{\epsilon}(t, x, y) = \sum_{n=1}^{\infty} \sum_{j=1}^{K_n} a_n^j z_n \left(u_n^j, y \right) \exp\left(\frac{iS_n^j}{\epsilon}\right).$$

Lemma

Let the total density be defined as

$$ho^\epsilon(t,x)=rac{1}{2\pi}\int_0^{2\pi}|\psi^\epsilon(t,x,y)|^2dy.$$

Then away from caustics, we have

$$ho^\epsilon(t,x)
ightarrow rac{1}{2\pi} \sum_n \sum_{j=1}^{K_n} |a_n^j|^2 \quad \text{as} \quad \epsilon
ightarrow 0.$$

Z. Wang (UCSD)

Numerical examples 1

$$b(x/\epsilon) \equiv 1, V_e \equiv 0 \text{ and } V(x/\epsilon) = \cos(x/\epsilon),$$

 $\psi^{\epsilon}(0,x) = \exp\left(-\frac{(x-\pi)^2}{2}\right) \exp\left(\frac{-0.3i\cos(x)}{\epsilon}\right).$

< 17 >

문에 비용에

э

Numerical examples 1

$$b(x/\epsilon) \equiv 1, V_e \equiv 0 \text{ and } V(x/\epsilon) = \cos(x/\epsilon),$$

 $\psi^{\epsilon}(0,x) = \exp\left(-\frac{(x-\pi)^2}{2}\right) \exp\left(\frac{-0.3i\cos(x)}{\epsilon}\right).$

Initial Decomposition

# of bands	4	6	8	10	12
L ¹ error	0.017008	0.008111	0.008101	0.008101	0.008101

Table: L^1 error table for initial Bloch decomposition with 101×101 grid points and 101 eigen-matrix.

- ∢ ⊒ →

Comparison with 2nd 2D Strang Splitting (SP2) method

Figure: Total averaged density with 8 bands when t = 0.1

Figure: Total averaged density with 8 bands when t = 0.3

< 口 > < 同 >

< ∃⇒

э

Figure: Total averaged density with 8 bands when t = 0.4

< □ > < 同 >

- ₹ 🖬 🕨

∃ >

э

Numerical example 2

$$b(x/\epsilon) \equiv 1, V(x/\epsilon) = \cos(x/\epsilon) \text{ and } V_e = 0,$$

$$\psi^{\epsilon}(0, x) = e^{\frac{-0.3i\cos(x)}{\epsilon}} e^{-(x-\pi)^2} z_n(0.3\sin(x), x/\epsilon), \quad n = 3, 4.$$

In this example, we concentrate the density on a single band to observe the phenomenon:

- n=3: Finite time caustic formation
- n=4: Rarefaction wave

n = 3, t = 1

Figure: Multivalued velocity and averaged density on band 3 when t = 1

Z. Wang (UCSD)

< 口 > < 同 >

э

A B M A B M

n = 3, t = 2

Figure: Multivalued velocity and averaged density on band 3 when t = 2

Z. Wang (UCSD)

< 口 > < 同 >

э

A B + A B +

n = 4, t = 0.1

Figure: Multivalued velocity and averaged density on band 4 when t = 0.1

< 口 > < 同 >

A B + A B +

э

n = 4, t = 0.5

Figure: Multivalued velocity and averaged density on band 4 when t = 0.5

< 同 ▶

- A - E - N

э

Numerical Examples 3: general b

Here we test a general $b(y) = \frac{3}{2} + \sin(y)$, $V(y) = \cos(y)$, $V_e = 0$, and

$$\psi^{\epsilon}(0,x) = \exp\left(-\frac{(x-\pi)^2}{2}\right)\exp\left(\frac{-0.3i\cos(x)}{\epsilon}\right).$$

Initial Decomposition:

# of bands	4	6	8	10	12
L ¹ error	0.015661	0.007301	0.007233	0.007233	0.007233

Table: L^1 error table for initial Bloch decomposition with 101×101 grid points and 101 eigen-matrix.

General coefficient function b

Figure: Total averaged density with 10 bands at different times

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

3

Summary and discussions

Summary

- Bloch decomposition is needed in periodic media
- Bloch band based level set method to capture the multi-valued solutions
- Proved superposition in density by weak convergence
- Numerical validation

Summary and discussions

Summary

- Bloch decomposition is needed in periodic media
- Bloch band based level set method to capture the multi-valued solutions
- Proved superposition in density by weak convergence
- Numerical validation

Discussion:

- Caustics, e.g., work by Jin et al.
- Recovering ψ^ϵ with proper phase shift from ϕ and f
- Computational cost, local level set method

Remark 1: WKB higher order terms and multivalued solutions

In the case of $b(x/\epsilon) = 1$ and $V(x/\epsilon) = 0$, WKB approximation leads to

$$S_t + H(x, S_x) = \frac{\epsilon^2}{2} \frac{(A_0)xx}{A_0}, \quad H(x, p) = \frac{1}{2} |p|^2 + V_e(x),$$

$$\rho_t + (\rho S_x)_x = 0.$$

- However, Hamilton-Jacobi equation develops finite time singularity in general and the disispative term on right generates oscillation.
- Conventional viscosity solution is not appropriate, instead multi-valued solutions have to be considered.

Remark 2: Gaussian beam construction for caustics

- Gaussian beam ansatz in Eulerian version (phase space) is no longer an asymptotic solution,
- How to superpose them correctly for the underlying equation?