level set meth

Hydrophobic pocke

(ロ) (同) (E) (E) (E)

Conclusions and outlook

A Level-Set Variational Implicit-Solvent Approach to Hydrophobic Interactions

Zhongming Wang

Biochemistry and Mathematics, UCSD

Joint work with L.-T. Cheng, P. Setny, J. Dzubiella, B. Li and J. A. McCammon

UCSD Informal Seminars on Mathematics and Biochemistry-Biophysics, Jan 27, 2009

Introduction

Variational implicit or continuum solvent models

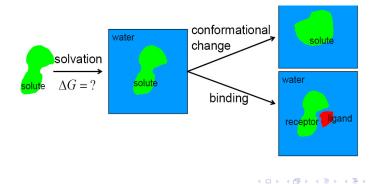
Level set method

Hydrophobic pocket

Conclusions and outlook

Basic facts

- Biological processes, such as molecular recognition and protein folding, occur in solution
- Solute-solvent interactions are crucial in determining biomolecular structures and solvation free energies



3

・ロン ・回と ・ヨン ・ヨン

Explicit solvent vs implicit solvent

Explicit solvent: solvent atoms treated explicitly (e.g., MD, MC)



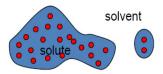
- Advantages
 First principle, accurate
- Disadvantages

Non-efficient, small portion of solutes (5-10%), boundary effects, uncertain convergence, statistical information

(ロ) (同) (E) (E) (E)

Explicit solvent vs implicit solvent cont'd

• Implicit solvent: solvent atoms are treated implicitly and solvent effects are coarse grained

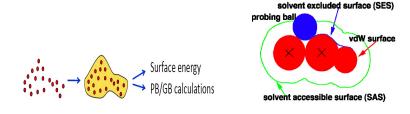


Advantages

Efficient, large systems, thermodynamical variables

• Disadvantages Mean field ion distribution, ignores details

Existing implicit solvent models



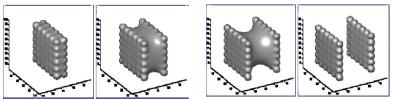
- Get atom positions
- Generate molecular surface(vdW surface, SES/SAS)
- Calculate surface energy
- Calculate electrostatic energy by PB/GB with the surface as dielectric boundary

・ロト ・回ト ・ヨト ・ヨト

Existing implicit solvent models cont'd

Issues of vdW surface, SAS/SES models

- Pre-defined dielectric interface
- Curvature correction
- Coupling of polar and nonpolar contributions
- Hydrophobicity ¹



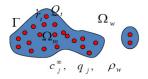
1 From Cheng, Dzubiella, McCammon, & Li, J. Chem. Phys., 2007 🔹 🖘 👘 🖉 🖉 🖉 🖉 🖓 🔍 🕐

Zhongming Wang

Variational implicit solvent model facts

- Variational implicit solvent model (VISM)
 - Dzubiella, Swanson, & McCammon, Phys. Rev. Lett. 96, 087802 (2006); J. Chem. Phys. 124, 084905 (2006)
 - Che, Dzubiella, Li, & McCammon, J. Phys. Chem. B, 112, 3058 (2008)
- VISM ideas
 - Solvation structure = solutes position + solute-solvent interface
 - Free energy minimization determines solute-solvent interface
 - Free energy couples with different interactions: polar, nonpolar, dispersive, etc.

VISM geometry and parameters



- Ω_m , Ω_w , Γ : solute region , solvent region, interface
- r_i , Q_i : center and fixed charged of i^{th} solute atom
- c_i^{∞} , q_j : bulk density and bulk charge of j^{th} ionic specie

ρ_w: solvent density

< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

Free energy functional

$$G[\Gamma] = G_{geom}[\Gamma] + G_{vdW}[\Gamma] + G_{elec}[\Gamma]$$

•
$$G_{geom}[\Gamma] = Pvol(\Omega_m) + \int_{\Gamma} \gamma(r) dS$$

 $\gamma(r) = \gamma_0[1 - 2\tau H(r)]$
 τ : Tolman length, H : mean curvature
 $G_{vdw}[\Gamma] = \rho_w \int_{\Omega_s} U(r) dV$
 $U(r) = \sum_i U_i(|r - r_i|)$
 $U_i(|r|) = 4\epsilon \left(\left(\frac{\sigma_i}{|r|}\right)^{12} + \left(\frac{\sigma_i}{|r|}\right)^6 \right)$

G_{elec}[Γ] use PB/GB, Coulomb approximation, etc (not presented in this pocket project)

Energy minimization

A Necessary condition for Γ to be a minimizer

 $\delta_{\Gamma}G[\Gamma] = 0, \forall r \in \Gamma$

• The energy minimizer Γ_{min} satisfies a PDE

$$P + 2\gamma_0(H(r) - \tau K(r)) - \rho_w U(r) + \left(\delta_{\Gamma} G_{elec}[\Gamma]|_{\Gamma_{min}}\right) = 0, \quad \forall r \in \Gamma_{min}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

• How to find the minimizer Γ_{min} ? Level set method

Outline Intro

i. implicit or cont. solve

level set method

ydrophobic pock

Conclusions and outlook

Level set method

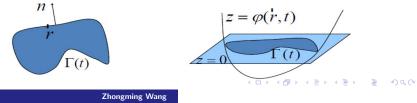
- Proposed by Sethian and Osher (1988); applied to image processing, computer vision, computational physics, etc.
- Interfaces (line, curve, surface, etc) are represented implicitly,

$$\Gamma(t) = \{r \in \Omega : \quad \Phi(r,t) = 0\}$$

 Motion of the interface is realized by evolution of the auxiliary function Φ(r, t)

$$\Phi_t + V_n |\nabla \Phi| = 0, \quad V_n = V_n(r, t) \text{ for } r \in \Gamma$$

• *V_n* is the normal velocity, which may be given or depend on curvatures



Geometric quantities in level set functions

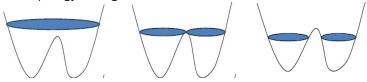
- Unit normal vector $n = \frac{\nabla \Phi}{|\nabla \Phi|}$
- Mean curvature $H = \frac{1}{2} \nabla \cdot n$
- Gaussian curvature $K = n \cdot adj(\text{He}(\Phi))n$ $adj(\cdot)$: adjoint matrix $He(\cdot)$: Hessian matrix
- Surface integral
- Volume integral
- $\int_{\Gamma} f(r) dS = \int_{\mathrm{IR}^3} f(r) \delta(\Phi) dV$ $\int_{\Omega} f(r) dV = \int_{\mathrm{IR}^3} f(r) (1 \mathrm{Heav}(\Phi)) dV$

Zhongming Wang

・ロン ・回と ・ヨン・

Facts about level set method

- Uniform mesh grids may be used
- Automatically handles topological change: merging, breaking, etc., unlike ray tracing method which needs to relabel marks when topology changes



- Local level set method can be used to reduce computational cost
- Accuracy issue: interface approximation, conservation of mass, etc.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Application to VISM

- Cheng, Dzubiella, McCammon, & Li, J. Chem. Phys., 2007
- Cheng, Xie, Dzubiella, McCammon, Che, & Li, J. Chem. Theory Comput.,(2008) accepted
- Cheng, Wang, Setny, Dzubiella, Li, & McCammon, 2008 (preprint)

Level set equation of relaxation:

$$\Phi_t + V_n |\nabla \Phi| = 0, V_n = -\delta_{\Gamma} G[\Gamma]$$

$$\delta_{\Gamma}G[\Gamma] = P + 2\gamma_0(H(r) - \tau K(r)) - \rho_w U(r) + \delta_{\Gamma}G_{elec}[\Gamma]$$

Motion of solute atoms due to interactions:

$$\frac{dx_i}{dt} = -\nabla_{x_i} G[\Gamma; x_1, \cdots, x_n]$$

Zhongming Wang

・ロト ・四ト ・ヨト ・ヨト - ヨ

Application to VISM cont'd

Decay of the free energy:

$$\frac{dG[V_n(t)]}{dt} = \int_{\Gamma(t)} \frac{\delta G[V_n(t)]}{\delta V_n} \left[\frac{dr(t)}{dt} \cdot n \right] dS$$
$$= -\int_{\Gamma(t)} \left| \frac{\delta G[V_n(t)]}{\delta V_n} \right|^2 dS < 0$$

- Γ = Γ(t) and t is not the real dynamical time, but represents the minimization iteration
- The normal velocity does not represent the interface evolution in real dynamics of the system.

Algorithm

- Step 1. Input parameters and initialize level-set function-signed distance function
- Step 2. Calculate the normal and curvatures
- Step 3. Calculate and extend the normal velocity
- Step 4. Solve the level-set equation
- Step 5. Reinitialize the level-set function
- Step 6. Solve ODEs for the motion of solute particles

• Step 7. Set $t = t + \Delta t$ and go to Step 2

Solving the level set equation numerically²

$$\Phi_t + V_n(r) |\nabla \Phi| = 0 \tag{1}$$

$$V_n(r) = -P - 2\gamma_0(H(r) - \tau K(r)) + \rho_w U(r)$$

- The mean curvature H and Gaussian curvature K are calculated from Φ
- Equation (1) is parabolic and may degenerate in certain parameter regimes. Computationally the degeneracy is removed by adding a small constant to the eigenvalues of the matrix that defines the parabolicity

²See in Cheng, Dzubiella, McCammon, & Li, J. Chem. Phys., 2007 - 《 ㅁ 》 《 쿱 》 《 클 》 《 클 》 - 클 》 - 클 》 이 이 (?

・ロト ・四ト ・ヨト ・ヨト - ヨ

Solving the level set equation numerically cont'd

- Reinitialization is used to keep $\nabla \Phi$ away from zero while the interface Γ is unchanged
- The normal velocity V_n is only defined on Γ theoretically, and extended in normal direction both sides numerically
- For large system, U(r) = ∑_i U_i(|r r_i|) is pre-computed and stored for each grid point (in the case of fixed solutes); a linear approximation is employed for any r ∈ Γ

(日) (同) (E) (E) (E)

Solving the level set equation numerically cont'd

- When distance is small, LJ potential changes rapidly. To improve the accuracy, we can compute LJ on a fine grid while the level set function is evolved on a coarse grid
- Make proper initial guess based on a priori knowledge of the interface shape

These will drastically speed up the program. For the system of 4,243 solute atoms, with a $50 \times 50 \times 50$ grid size and a good initial guess, it takes 5 minutes. Two hours with a bad initial guess and high resolution.

Pocket system³



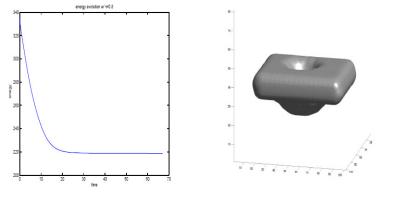
Each wall consists of 4,242 atoms.

Zhongming Wang

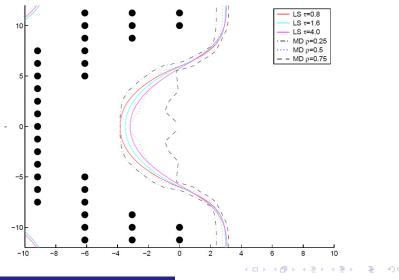
イロン イヨン イヨン イヨン

Wall (R8) without ligand

We first study the case of wall without ligand. We focus on the energy relaxation and interface with the effect of Tolman correction.



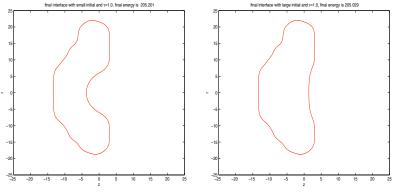
Wall (R8) without ligand: effect of Tolman correction



Zhongming Wang

(日) (四) (王) (王) (王)

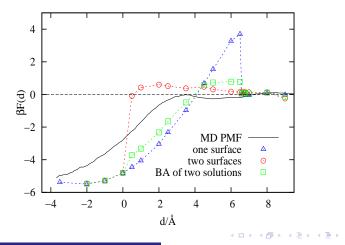
Wall (*R*8) without ligand: effect of initial interface



Left: final interface with tight initial; right: final interface with loose initial

Wall (R8) with ligand

In this case, we study the interface and energy with respect to the ligand position. Bi-mode is observed when $d \in [0, 7]$.

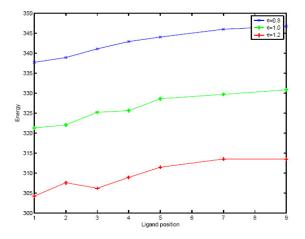


Zhongming Wang

イロン イヨン イヨン イヨン

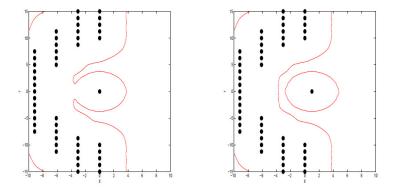
Э

Wall (R8) with ligand: effect of Tolman correction



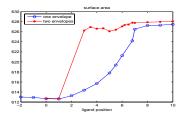
イロン イヨン イヨン イヨン

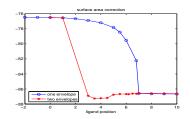
Wall (R8) with ligand: effect of initial interface (d = 0)

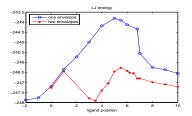


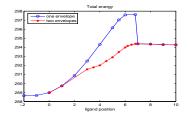
Left: final interface with loose initial; right: final interface with tight initial

Wall (R5) with ligand: energy profile





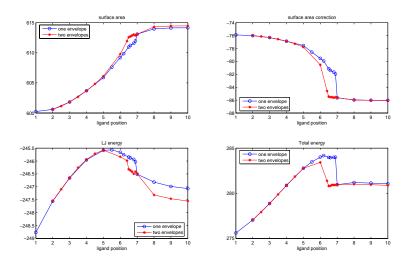




Zhongming Wang

<ロ> (四) (四) (三) (三) (三)

Wall (R0) with ligand: energy profile

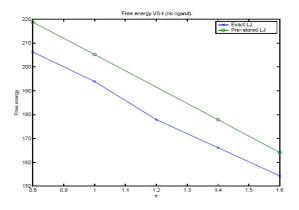


イロン 不同と 不同と 不同と

æ

Efficiency vs accuracy

Efficiency is achieved at the cost of accuracy. Here is a figure showing the energy difference of the wall without ligand, computed with and without pre-computation of LJ potential.



Conclusion and outlook

Conclusions

- Tested the theory and method, and find that they work well to capture hydrophobic interactions
- Curvature correction has a stronger influence to the concave region than the convex region of solute-solvent interfaces
- Describe the bimodal behavior very well
- Very accurate free energy calculations
- Discussion
 - In terms of the model, how to choose the Tolman length
 - Comparison with SAS/SES type of implicit-solvent models
 - How to include the electrostatics efficiently?
 - The efficiency of the method compared with other implicit models?

(日) (同) (E) (E) (E)

tline Intro Vari. implicit or cont. sol

t level set metl

Hydrophobic pock

Conclusions and outlook

<ロ> (四) (四) (三) (三) (三)

Thank you!

Zhongming Wang

(日) (同) (E) (E) (E)

• Reinitialization: solve

$$\Phi_t + sgn(\Phi)(\nabla \Phi - 1) = 0$$

to a steady state, where

$$sgn(\Phi) = rac{\Phi}{\sqrt{\Phi^2 + \epsilon}}$$

• Parabolicity: curvatures *H* and *K* are calculated from the second fundamental form

$$II = rac{1}{|
abla \Phi|} P_{
abla \Phi}
abla^2 \Phi P_{
abla \Phi}, \quad P_{
abla \Phi} = I - rac{
abla \Phi \otimes
abla \Phi}{|
abla|^2}.$$

II is used to make sure the parabolicity