# AMSC 612: Numerical Methods in Partial Differential Equations 

Fall Semester, 2002

## Instructor: Bo Li

## Homework Assignment 2

Due Wednesday, November 6, 2002

1. For each of the following two problems

$$
\begin{aligned}
& u_{t}+a(x) u_{x}=0, \quad 0<x<1, t>0 \\
& u(x, 0)=x(1-x), \quad 0 \leq x \leq 1
\end{aligned}
$$

where $a(x)=x-1 / 2$, and

$$
\begin{aligned}
& u_{t}+a(x) u_{x}=0, \quad 0<x<1, t>0, \\
& u(x, 0)=x(1-x), \quad 0 \leq x \leq 1 \\
& u(0, t)=u(1, t)=0, \quad t>0
\end{aligned}
$$

where $a(x)=1 / 2-x$ :
(1) Sketch the characteristics for the equation in the problem;
(2) Set up the upwind scheme with a uniform spatial grid $\left\{x_{j}=j \Delta x: j=\right.$ $0,1, \cdots, J\}$ for an integer $J \geq 1$;
(3) Derive the local truncation error;
(4) Derive the global error bounds for both even and odd $J$;
(5) Sketch the development of the solution.
2. Determine the coefficients $c_{-1}, c_{0}$, and $c_{1}$ so that the finite difference scheme

$$
u_{j}^{n+1}=c_{-1} u_{j-1}^{n}+c_{0} u_{j}^{n}+c_{1} u_{j+1}^{n}
$$

for the equation

$$
u_{t}+a u_{x}=0
$$

where $a>0$ is a constant, agrees with the Taylor expansion of $u\left(x_{j}, t_{n+1}\right)$ to as high order as possible. Verify that the result is the Lax-Wendroff scheme.
3. For each of the upwind, Lax-Wendroff, and leap-frog schemes applied to the initialvalue problem of the equation

$$
u_{t}+a u_{x}=0
$$

where $a>0$ is a constant, find out the amplification factor $\lambda=\lambda(k)$ with $k$ a wavenumber and the leading terms (up to $\xi^{3}$ with $\xi=k \Delta x$ ) in phase expansions.
4. Consider the initial-boundary-value problem of hyperbolic equation

$$
\begin{aligned}
& u_{t}+a(x, t) u_{x}=0, \quad x>0, t>0 \\
& u(x, 0)=u_{0}(x), \quad x \geq 0 \\
& u(0, t)=0, \quad x \geq 0
\end{aligned}
$$

where

$$
\begin{aligned}
& a(x, t)=\frac{1+x^{2}}{1+2 x t+2 x^{2}+x^{4}}, \\
& u_{0}(x)= \begin{cases}1 & \text { if } 0.2 \leq x \leq 0.4 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

(1) Verify that the exact solution of this problem is

$$
u(x, t)=u_{0}\left(x-\frac{t}{1+x^{2}}\right) .
$$

(2) Use the upwind scheme to solve the problem with $\Delta t=\Delta x=0.02$ and $\Delta t=$ $\Delta x=0.01$, respectively. In each case, show for each value of $t=0,0.1,0.5$, and 1, the graph of both the exact and numerical solutions on the same plot.
(3) Use the Lax-Wendroff scheme to solve the problem with $\Delta t=\Delta x=0.02$ and $\Delta t=\Delta x=0.01$, respectively. In each case, show for each value of $t=0,0.1$, 0.5 , and 1 , the graph of both the exact and numerical solutions on the same plot.
5. Prove that the numerical scheme

$$
u_{j}^{n+1}=u_{j}^{n}-C_{j-1}^{n}\left(u_{j}^{n}-u_{j-1}^{n}\right)+D_{j}^{n}\left(u_{j+1}^{n}-u_{j}^{n}\right)
$$

with

$$
C_{j-1}^{n} \geq 0, \quad D_{j}^{n} \geq 0, \quad C_{j}^{n}+D_{j}^{n} \leq 1, \quad \forall j, n
$$

is total variation diminishing (TVD), i.e., it satisfies

$$
\sum_{j=-\infty}^{\infty}\left|u_{j}^{n+1}-u_{j-1}^{n+1}\right| \leq \sum_{j=-\infty}^{\infty}\left|u_{j}^{n}-u_{j-1}^{n}\right|
$$

Put the upwind and Lax-Wendroff schemes into the above form, and show that the former is TVD when it is stable, while the latter is not TVD for any $\Delta t$.

