
AMSC 612: Numerical Methods in Partial Differential Equations

Fall Semester, 2002

Instructor: Bo Li

Homework Assignment 3

Due Friday, December 6, 2002

1. Let J ≥ 1 be an integer and −π = x
−J < · · · < x0 < · · · < xJ = π be a uniform grid of

[−π, π] with grid size ∆x = π/J and grid points xj = j∆x (j = 0,±1, · · · ,±J). Let
GJ denote the complex inner product space that consists of all the complex-valued,
periodic, grid functions with the inner product

〈U, V 〉 = ∆x

J
∑

j=1−J

U(xj)V (xj) ∀U, V ∈ GJ .

For each wavenumber k = 1 − J, 2 − J, · · · , J , define the Fourier mode Φk ∈ GJ by

Φk(xj) =
1√
2π

eikxj , j = 0,±1, · · · ,±J.

For any U ∈ GJ , define its discrete Fourier transform Û to be the complex-valued
function of wavenumber

Û(k) =
∆x√
2π

J
∑

j=1−J

U(xj)e
−ikxj , k = 0,±1, · · · ,±J.

(1) Show that the system of all the Fourier modes {Φk}J
k=1−J forms an orthonormal

basis of the inner product space GJ .
(2) Show that

U(xj) =
J

∑

k=1−J

Û(k)Φk(xj), j = 0,±1, · · · ,±J.

(3) Prove the Parseval identity: ‖Û‖ = ‖U‖ for all U ∈ GJ , where ‖Û‖2 =
∑J

k=1−J |Û(k)|2 and ‖U‖2 = 〈U,U〉.
2. Let n ≥ 2 be an integer. For any v = (v0, · · · , vn) ∈ R

n+1 and w = (w0, · · · , wn) ∈
R

n+1, denote

〈v, w〉 =
n−1
∑

j=1

vjwj.

Denote also

∆+vj = vj+1 − vj, ∆
−
vj = vj − vj−1, ∆0vj =

1

2
(vj+1 − vj−1).

Prove the following formulas of summation by parts:

〈v, ∆+w〉 + 〈∆
−
v, w〉 = vn−1wn − v0w1;

〈v, ∆0w〉 + 〈∆0v, w〉 =
1

2
[(vn−1wn + vnwn−1) − (v0w1 + v1w0)] .
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3. Consider the finite difference discretiztion with a uniform grid of the one-dimensional
diffusion-advection equation

ut + aux = ǫuxx, (1)

where a 6= 0 and ǫ > 0 are constants. Denote by ∆x and ∆t the spatial grid size and
time step. Denote also the ratios ν = |a|∆t/∆x and µ = ǫ∆t/(∆x)2.
(1) Consider the following scheme that is central in space and forward in time for

Eq. (1)
un+1

i − un
i

∆t
+ a

∆0iu
n
i

∆x
= ǫ

δ2
i u

n
i

(∆x)2
.

(a) Calculate the amplification factor λ = λ(k).
(b) Show that if µ ≤ 1/2 then

|λ(k)|2 ≤ 1 +
a2

2ǫ
∆t.

Thus, the von Neumann’s stability condition is satisfied. Let ν = 1
and µ = 1/4. What is then |λ(k)| for the wavenumber k that satisfies
sin2(k∆x)/2 = 1/2? Interpret it in terms of the growth of numerical os-
cillation.

(c) Show that |λ(k)| ≤ 1 for all k if and only if ν2 ≤ 2µ ≤ 1.
(2) Consider a modification of the above scheme that uses the up-wind scheme to

discretize the advection term aux but uses the same discretization for the terms
ut and ǫuxx.

(a) Calculate the amplification factor λ = λ(k).
(b) Show that |λ(k)| ≤ 1 for all k if and only if ν2 ≤ ν + 2µ ≤ 1.

4. Suppose that the Lax-Wendroff method is applied on a uniform grid to the advection
equation ut + aux = 0 with constant a > 0. Let ν = a∆t/∆x, where ∆x and ∆t are
the spatial grid size and time step. Show that, over the whole real line,

‖un+1‖2 = ‖un‖2 − 1

2
ν2(1 − ν2)

(

‖∆
−
un‖2 − 〈∆

−
un, ∆+un〉

)

,

and hence deduce the stability condition.
5. Let Ω = (0, 1) × (0, 1) ⊂ R

2 and f ∈ C(Ω̄). Use the standard five-point scheme to
discretize the boundary-value problem

−∆u = f in Ω

u = 0 on ∂Ω

with a uniform grid in which the grid size is ∆x = ∆y = 1/n for some integer n ≥ 2.
(1) Write a simple Matlab code for solving the linear system using both Gauss-

Jacobi and Gauss-Seidel iterative methods. Test the code with the exact solution
u(x, y) = sin πx sin πy for the related f .

(2) Order all the interior grid points in a natural way, e.g., from bottom to top and
from left to right, and write down the coefficient matrix and the right-hand side
vector for the resulting linear system of equations.
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