AMSC 612: Numerical Methods in Partial Differential Equations Fall Semester, 2002
 Instructor: Bo Li
 Homework Assignment 3

Due Friday, December 6, 2002

1. Let $J \geq 1$ be an integer and $-\pi=x_{-J}<\cdots<x_{0}<\cdots<x_{J}=\pi$ be a uniform grid of $[-\pi, \pi]$ with grid size $\Delta x=\pi / J$ and grid points $x_{j}=j \Delta x(j=0, \pm 1, \cdots, \pm J)$. Let G_{J} denote the complex inner product space that consists of all the complex-valued, periodic, grid functions with the inner product

$$
\langle U, V\rangle=\Delta x \sum_{j=1-J}^{J} U\left(x_{j}\right) \bar{V}\left(x_{j}\right) \quad \forall U, V \in G_{J} .
$$

For each wavenumber $k=1-J, 2-J, \cdots, J$, define the Fourier mode $\Phi_{k} \in G_{J}$ by

$$
\Phi_{k}\left(x_{j}\right)=\frac{1}{\sqrt{2 \pi}} e^{i k x_{j}}, \quad j=0, \pm 1, \cdots, \pm J
$$

For any $U \in G_{J}$, define its discrete Fourier transform \hat{U} to be the complex-valued function of wavenumber

$$
\hat{U}(k)=\frac{\Delta x}{\sqrt{2 \pi}} \sum_{j=1-J}^{J} U\left(x_{j}\right) e^{-i k x_{j}}, \quad k=0, \pm 1, \cdots, \pm J
$$

(1) Show that the system of all the Fourier modes $\left\{\Phi_{k}\right\}_{k=1-J}^{J}$ forms an orthonormal basis of the inner product space G_{J}.
(2) Show that

$$
U\left(x_{j}\right)=\sum_{k=1-J}^{J} \hat{U}(k) \Phi_{k}\left(x_{j}\right), \quad j=0, \pm 1, \cdots, \pm J .
$$

(3) Prove the Parseval identity: $\|\hat{U}\|=\|U\|$ for all $U \in G_{J}$, where $\|\hat{U}\|^{2}=$ $\sum_{k=1-J}^{J}|\hat{U}(k)|^{2}$ and $\|U\|^{2}=\langle U, U\rangle$.
2. Let $n \geq 2$ be an integer. For any $v=\left(v_{0}, \cdots, v_{n}\right) \in \mathbb{R}^{n+1}$ and $w=\left(w_{0}, \cdots, w_{n}\right) \in$ \mathbb{R}^{n+1}, denote

$$
\langle v, w\rangle=\sum_{j=1}^{n-1} v_{j} w_{j} .
$$

Denote also

$$
\Delta_{+} v_{j}=v_{j+1}-v_{j}, \quad \Delta_{-} v_{j}=v_{j}-v_{j-1}, \quad \Delta_{0} v_{j}=\frac{1}{2}\left(v_{j+1}-v_{j-1}\right)
$$

Prove the following formulas of summation by parts:

$$
\begin{aligned}
& \left\langle v, \Delta_{+} w\right\rangle+\left\langle\Delta_{-} v, w\right\rangle=v_{n-1} w_{n}-v_{0} w_{1} \\
& \left\langle v, \Delta_{0} w\right\rangle+\left\langle\Delta_{0} v, w\right\rangle=\frac{1}{2}\left[\left(v_{n-1} w_{n}+v_{n} w_{n-1}\right)-\left(v_{0} w_{1}+v_{1} w_{0}\right)\right]
\end{aligned}
$$

3. Consider the finite difference discretiztion with a uniform grid of the one-dimensional diffusion-advection equation

$$
\begin{equation*}
u_{t}+a u_{x}=\epsilon u_{x x}, \tag{1}
\end{equation*}
$$

where $a \neq 0$ and $\epsilon>0$ are constants. Denote by Δx and Δt the spatial grid size and time step. Denote also the ratios $\nu=|a| \Delta t / \Delta x$ and $\mu=\epsilon \Delta t /(\Delta x)^{2}$.
(1) Consider the following scheme that is central in space and forward in time for Eq. (1)

$$
\frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}+a \frac{\Delta_{0 i} u_{i}^{n}}{\Delta x}=\epsilon \frac{\delta_{i}^{2} u_{i}^{n}}{(\Delta x)^{2}} .
$$

(a) Calculate the amplification factor $\lambda=\lambda(k)$.
(b) Show that if $\mu \leq 1 / 2$ then

$$
|\lambda(k)|^{2} \leq 1+\frac{a^{2}}{2 \epsilon} \Delta t
$$

Thus, the von Neumann's stability condition is satisfied. Let $\nu=1$ and $\mu=1 / 4$. What is then $|\lambda(k)|$ for the wavenumber k that satisfies $\sin ^{2}(k \Delta x) / 2=1 / 2$? Interpret it in terms of the growth of numerical oscillation.
(c) Show that $|\lambda(k)| \leq 1$ for all k if and only if $\nu^{2} \leq 2 \mu \leq 1$.
(2) Consider a modification of the above scheme that uses the up-wind scheme to discretize the advection term $a u_{x}$ but uses the same discretization for the terms u_{t} and $\epsilon u_{x x}$.
(a) Calculate the amplification factor $\lambda=\lambda(k)$.
(b) Show that $|\lambda(k)| \leq 1$ for all k if and only if $\nu^{2} \leq \nu+2 \mu \leq 1$.
4. Suppose that the Lax-Wendroff method is applied on a uniform grid to the advection equation $u_{t}+a u_{x}=0$ with constant $a>0$. Let $\nu=a \Delta t / \Delta x$, where Δx and Δt are the spatial grid size and time step. Show that, over the whole real line,

$$
\left\|u^{n+1}\right\|^{2}=\left\|u^{n}\right\|^{2}-\frac{1}{2} \nu^{2}\left(1-\nu^{2}\right)\left(\left\|\Delta_{-} u^{n}\right\|^{2}-\left\langle\Delta_{-} u^{n}, \Delta_{+} u^{n}\right\rangle\right),
$$

and hence deduce the stability condition.
5. Let $\Omega=(0,1) \times(0,1) \subset \mathbb{R}^{2}$ and $f \in C(\bar{\Omega})$. Use the standard five-point scheme to discretize the boundary-value problem

$$
\begin{aligned}
&-\Delta u=f \text { in } \Omega \\
& u=0 \\
& \text { on } \partial \Omega
\end{aligned}
$$

with a uniform grid in which the grid size is $\Delta x=\Delta y=1 / n$ for some integer $n \geq 2$.
(1) Write a simple Matlab code for solving the linear system using both GaussJacobi and Gauss-Seidel iterative methods. Test the code with the exact solution $u(x, y)=\sin \pi x \sin \pi y$ for the related f.
(2) Order all the interior grid points in a natural way, e.g., from bottom to top and from left to right, and write down the coefficient matrix and the right-hand side vector for the resulting linear system of equations.

