1. For each integer $n \geq 1$, define $u_n, v_n : \mathbb{R}^2 \to \mathbb{R}$ in the polar coordinates by

\[
u_n(r, \theta) = r^n \cos(n\theta) \quad \text{and} \quad v_n(r, \theta) = r^n \sin(n\theta).
\]

Show that both u_n and v_n are harmonic functions in \mathbb{R}^2.

2. Consider the boundary-value problem

\[
\begin{cases}
\Delta u = 0 & \text{in } \{r > a\}, \\
u(a, \theta) = h(\theta) & \text{on } \{r = a\}, \\
u & \text{is bounded as } r \to \infty,
\end{cases}
\]

where $h = h(\theta)$ is a continuous and 2π-periodic function. The solution formula for this problem is given in Eq. (9) on page 175 of the textbook. (See more details in Example 3 on pages 174 and 175 of the textbook.)

(1) What is the difference between this formula and Poisson’s formula, Eq. (13) on page 168 of the textbook?

(2) Why the right-hand side of Eq. (9) as a function of (r, θ) is bounded as $r \to \infty$?

3. Let D be a bounded domain in \mathbb{R}^d ($d = 2$ or 3) with a smooth boundary ∂D. Let $f : \overline{D} \to \mathbb{R}$ and $g : \partial D \to \mathbb{R}$ be two continuous functions. Assume $u : \overline{D} \to \mathbb{R}$ has all the continuous, second-order partial derivatives, and solves the boundary-value problem

\[
\begin{cases}
\Delta u = -f & \text{in } D, \\
\partial_n u = g & \text{on } \partial D,
\end{cases}
\]

where ∂_n is the partial derivative along the exterior normal n along the boundary ∂D. Prove that

\[
\int_D f \, dx + \int_{\partial D} g \, dS = 0.
\]

(Hint: See Eq. (3) and Eq. (4) on page 180 of the textbook.)

4. Let D be a bounded domain in R^d ($d = 2$ or 3) with a smooth boundary ∂D and f a given function on D. Prove the uniqueness of solution to the boundary-value problem of $\Delta u = f$ in D with

(1) the Dirichlet boundary condition $u = g$ on ∂D, where g is a continuous function on ∂D,

(2) with the Robin boundary condition $\partial_n u + au = b$ on ∂D, where a and b are two continuous functions on ∂D and a is strictly positive.

What about the Neumann boundary condition $\partial_n u = h$ for some continuous function h on ∂D?