Math 130B: Ordinary Differential Equations and Dynamical Systems (II), Spring 2019 Review for Final Exam

1. Equilibrium points and their stabilities (Sections 8.1–8.4, and 9.2)

- (a) Equilibrium points, and their stability, asymptotic stability, and instability.
- (b) Linearized systems. The Linearization Theorem for hyperbolic equilibrium points.
- (c) Liapunov functions and the Liapunov Stability Theorem.

2. Bifurcation (Section 8.5)

- (a) Saddle-node (e.g., $\dot{x} = r x^2$, $\dot{y} = -y$), transcritical (e.g., $\dot{x} = rx x^2$, $\dot{y} = -y$), and pitchfork bifurcations (e.g., supercritical: $\dot{x} = rx x^3$, $\dot{y} = -y$, subcritical: $\dot{x} = rx + x^3$, $\dot{y} = -y$): model equations, bifurcation diagrams, and phase portraits.
- (b) Hopf bifurcations: creation or annihilation of closed orbits.

3. Gradient systems and (planar Hamiltonian systems (Sections 9.3 and 9.4)

- (a) Gradient systems. A necessary condition. Equilibrium points and their stabilities.
- (b) Why $(d/dt)V(x(t)) \leq 0$? Why a gradient system has no non-constant period solutions?
- (c) Why trajectories of solutions to a gradient system $\dot{x} = -\nabla V(x)$ are orthogonal to the level surfaces of the potential function V?
- (d) Show that the Hamiltonian on any trajectory is a constant: (d/dt)H(x(t), y(t)) = 0.
- (e) Why a solution to a Hamiltonian system will stay in a level curve of the Hamiltonian?

4. Closed orbits and limit sets (Sections 10.1–10.3, 10.5, 12.2, and 12.3)

- (a) The α -limit set and ω -limit set of a point x (or a trajectory).
- (b) The Dulac's criterion for excluding closed orbits.
- (c) Construction of Poincaré maps. Use the Poincaré map to study the stability of a closed orbit.
- (d) The Poincaré–Bendixson Theorem. The trapping region method.
- (e) The Liénard equation $\ddot{x} + f(x)\dot{x} + g(x) = 0$, equivalently: $\dot{x} = y F(x)$ and $\dot{y} = -g(x)$ with F'(x) = f(x). The van der Pol equation $\ddot{x} + \mu(x^2 1)\dot{x} + x = 0$.

5. The Lorenz System (Sections 14.1–14.3)

- (a) Why the change of variables $(x, y, z) \rightarrow (-x, -y, z)$ does not change the Lorenz equations?
- (b) Why the Lorenz system is dissipative (i.e., volume contraction)?
- (c) Show that the z-axis is invariant for the Lorenz system.
- (d) Show that any trajectory of solution to the Lorenz equations will eventually enter into and stay inside a sphere centered at $(0, 0, r + \sigma)$.
- (e) Fixed points (0,0,0) for r < 1, (0,0,0) and Q_+ and Q_- for r > 1, and their stabilities.

6. One-dimensional maps (Sections 15.1–15.3)

- (a) Fixed points and their stabilities. Periodic orbits and their stabilities. Web diagrams.
- (b) Bifurcations.
- (c) The discrete logistic model: $x_{n+1} = \lambda x_n (1 x_n)$.

Additional Practice Problems

- (b) $\dot{x} = xy 1, \ \dot{y} = x y^3;$ (c) $\dot{x} = y^2 3x + 2, \ \dot{y} = x^2 y^2.$
- 2. Consider the system $\dot{x} = y^3 4x$, $\dot{y} = y^3 y 3x$.
 - (a) Find all the fixed points and classify them.
 - (b) Show that the line x = y is invariant, i.e., any trajectory that starts on it stays on it.
 - (c) Show that $|x(t) y(t)| \to 0$ as $t \to \infty$ for all other trajectories. (Hint: Form a different equation for x - y.)
- 3. Show that $V(x,y) = x^2 + y^2$ is a Liapunov function for the system $\dot{x} = y x^3$ and $\dot{y} = -x y^3$ at the equilibrium point (0,0). Is this equilibrium point stable? asymptotically stable?
- 4. Find a strict Liapunov function for the equilibrium point (0,0) of $\dot{x} = -2x y^2$, $\dot{y} = -y x^2$.
- 5. Show that the first-order system $\dot{x} = r x e^{-x}$, $\dot{y} = -y$ undergoes a saddle-node bifurcation as r is varied, and find the value of r at the bifurcation point.
- 6. Consider the equation $\dot{x} = 1 + rx + x^2$, where $r \in \mathbb{R}$ is a parameter.
 - (a) Find the critical value $r = r_c$ at which a saddle-node bifurcation occurs.
 - (b) Sketch the birfaction diagram of the fixed point x vs. r.
- 7. Consider the equation $\dot{x} = x rx(1 x)$, where $r \in \mathbb{R}$ is a parameter.
 - (a) Find the critical value $r = r_c$ at which a transcritical bifurcation occurs.
 - (b) Sketch the bifurcation diagram of the fixed point x vs. r.
- 8. Consider the equation $\dot{x} = x + rx/(1+x^2)$, where $r \in \mathbb{R}$ is a parameter.
 - (a) Find the critical value $r = r_c$ at which a pitchfork bifurcation occurs.
 - (b) Sketch the bifurcation diagram of the fixed point x vs. r.
- 9. Consider $\dot{x} = y 2x$, $\dot{y} = \mu + x^2 y$.
 - (a) Sketch the nullclines.
 - (b) Find and classify the bifurcations that occur as μ varies.
 - (c) Sketch the phase portrait as a function of μ .
- 10. The system $\dot{x} = (\mu x^2 y^2)x y$, $\dot{y} = (\mu x^2 y^2)y + x$, where μ is a parameter, can be reformulated in the polar coordinates as $\dot{r} = \mu r - r^3$ and $\dot{\theta} = 1$. Show this system undergoes a Hopf bifurcation at $\mu = 0$ by showing the following:
 - (a) If $\mu < 0$ then the origin is a stable spiral, and all trajectories approach the origin.
 - (b) If $\mu > 0$ then the origin is an unstable spiral, and the circle $r = \sqrt{\mu}$ is a stable periodic solution.
- 11. Let $V(x,y) = (x^2 1)^2 + y^2$. Find all the equilibrium points and determine their stabilities for the gradient system $\dot{x} = -\partial_x V(x,y), \ \dot{y} = -\partial_y V(x,y)$. Draw a few level curves V(x,y) = c and draw some trajectories.
- 12. Identify all the points that lie in either an ω -limit set or an α -limit set of a solution trajectory of the system $\dot{r} = r^3 - 3r^2 + 2r$, $\dot{\theta} = 1$.
- 13. Show by Dulac's Criterion that the system $\dot{x} = x(2-x-y), \dot{y} = y(4x-x^2-3)$ has no closed orbits in the first quadrant x > 0, y > 0.
- 14. Use Dulac's criterion to show that the system $\dot{x} = y$, $\dot{y} = -x y + x^2 + y^2$ has no closed orbits. (Hint: try $q(x, y) = e^{-2x}$.)
- 15. Consider the system $\dot{x} = x y x(x^2 + 2y^2), \ \dot{y} = x + y y(x^2 + 2y^2).$
 - (a) Write the system in the polar coordinates. (You can use $r\dot{r} = x\dot{x} + y\dot{y}$ and $\dot{\theta} = (\dot{y}x \dot{x}y)/r^2$.) (b) Use the trapping region method to show that this system has a closed orbit in the region
 - defined by $r_1 < r < r_2$ for some positive numbers r_1 and r_2 with $0 < r_1 < r_2$.
- 16. Consider the two-dimensional system $\dot{X} = AX ||X||^2 X$, where A is a 2 × 2 constant real matrix with complex eigenvalues $\alpha \pm i\beta$ ($\alpha, \beta \in \mathbb{R}$ and $\beta \neq 0$). Prove that there exists at least one limit cycle if $\alpha > 0$ and that there are none if $\alpha < 0$.
- 17. Show that the system $\dot{x} = x y x^3$, $\dot{y} = x + y y^3$ has a periodic solution.
- 18. Consider the system $\dot{x} = x(1 4x^2 y^2) 0.5y(1 + x), \ \dot{y} = y(1 4x^2 y^2) + 2x(1 + x).$
 - (a) Show that the origin is an unstable fixed point.

- (b) Consider \dot{V} with $V(x,y) = (1 4x^2 y^2)^2$ to show that all trajectories approach the ellipse $4x^2 + y^2 = 1$ as $t \to \infty$.
- 19. Consider the three-dimensional system in the cylindrical coordinates $\dot{r} = r(1-r)$, $\dot{\theta} = 1$, $\dot{z} = -z$. Compute the Poincaré map $P: S \to S$ along the closed orbit r = 1, z = 0, where $S = \{(\theta, r, z) : \theta = 0, r > 0, z \in \mathbb{R}\}$, and show that this closed orbit is asymptotically stable.
- 20. Consider the three-dimensional system in the cylindrical coordinates $\dot{r} = r(1-r)$, $\dot{\theta} = 1$, $\dot{z} = z$. Compute again the Poincaré map $P : S \to S$ along the closed orbit r = 1, z = 0. where $S = \{(\theta, r, z) : \theta = 0, r > 0, z \in \mathbb{R}\}$, What can you now say about the behavior of solutions near the closed orbit? Sketch the phase portrait for this system.
- 21. The system $\dot{r} = r(1 r^2)$, $\dot{\theta} = 1$ has a closed orbit r = 1. Compute the Poincaré map defined on the positive x-axis for this orbit and determine the stability of this orbit.
- 22. Consider the system in polar coordinates $\dot{r} = \mu r r^3$ and $\dot{\theta} = 1$, where μ is a parameter. In the cartesian coordinates, this system is $\dot{x} = (\mu x^2 y^2)x y$ and $\dot{y} = (\mu x^2 y^2)y + x$.
 - (a) Suppose $\mu < 0$. Show that the origin is a stable spiral and explain why all trajectories approach the origin.
 - (b) Suppose $\mu > 0$. Show that the origin is an unstable spiral and explain why the circle $r = \sqrt{\mu}$ is a stable limit cycle.

(This system has a supercritical Hopf bifurcation at $\mu_c = 0$.)

- 23. Consider the vector field given in the polar coordinates by $\dot{r} = r r^2$, $\dot{\theta} = 1$.
 - (a) Let S be the positive x-axis and compute the Poincaré map from S to itself.
 - (b) Show that the system has a unique periodic orbit and classify its stability.
- 24. Prove the elementary properties for the Lorenz system: volume contraction; existence of a trapping sphere; and the z-axis is invariant.
- 25. Draw the cobweb for $x_{n+1} = \sin x_n$ for n = 0, 1, 2, 3 with $x_0 = \pi/2$.
- 26. Find all the fixed points for the one-dimensional map $x_{n+1} = f(x_n)$ and determine their stabilities, where the function f(x) is given by: (a) $f(x) = x^2$; (b) $f(x) = 3x x^3$.
- 27. Show that $x_{n+1} = 1 + (1/2) \sin x_n$ has a unique fixed point. Is it stable?
- 28. Let $0 < a < e^{-1}$. Show that the map $x_{n+1} = ae^{x_n}$ has exactly two fixed points and classify their linear stabilities.
- 29. Show that the logistic map $x_{n+1} = rx_n(1-x_n)$ has a 2-cycle if r > 3.
- 30. Show that the iteration $x_{n+1} = \cos x_n$ has a unique fixed point. Predict the stability of this fixed point by drawing the web diagram. Can you prove your statement?
- 31. Find possible periodic points with period n = 1 or 2 for each of the following maps and classify them as attracting, repelling, or neither: (a) $f(x) = x x^2$; (b) $f(x) = 2(x x^2)$.
- 32. Discuss the bifurcations that occur in the following families of maps at the indicated parameter value: (a) $S_{\lambda}(x) = \lambda \sin x$ at $\lambda = 1$; (b) $E_{\lambda}(x) = \lambda e^x$ at $\lambda = 1/e$.
- 33. Assume that x_0 lies on a cycle of period n for the map defined by f(x). Let $x_i = f(x_{i-1})$ (i = 1, ..., n). Show that $(f^n)'(x_0) = \prod_{i=0}^{n-1} f'(x_i)$, and conclude that

$$(f^n)'(x_0) = (f^n)'(x_j), \qquad j = 1, \dots, n-1.$$