Math 130B: ODE and Dynamical Systems, Spring 2019 Homework Assignment 1

Due Monday, April 8, 2019

1. Problem 1 of Exercises of Chapter 8: (ii), (iii), and (v).
2. Use a computer program to plot phase portraits of the following systems:
(i) (van der Pol oscillator) $\dot{x}=y, \dot{y}=-x+y\left(1-x^{2}\right)$.
(ii) (Dipole fixed point) $\dot{x}=2 x y, \dot{y}=y^{2}-x^{2}$.
3. Problem 2 of Exercises of Chapter 8.
4. (Polar coordinates) Use the identity $\theta=\tan ^{-1}(y / x)$ to show that $\dot{\theta}=(x \dot{y}-y \dot{x}) / r^{2}$.
5. Consider the system $\dot{x}=y, \dot{y}=-x+\left(1-x^{2}-y^{2}\right) y$.
(i) Let D be the disk $x^{2}+y^{2}<4$. Verify that the system satisfies the hypotheses of the existence and uniqueness theorem throughout the domain D.
(ii) By substitution, show that $x(t)=\sin t, y(t)=\cos t$ is an exact solution of the system.
(iii) Now consider a different solution, in this case starting from the initial condition $x(0)=1 / 2, y(0)=0$. Without doing any calculations, explain why this solution must satisfy $x(t)^{2}+y(t)^{2}<1$ for all $t<\infty$.

6 . Let $\phi: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a smooth dynamical system. Define

$$
F(x)=\left.\frac{d}{d t}\right|_{t=0} \phi(t, x) \quad \forall x \in \mathbb{R}^{n}
$$

Show that, for any $x_{0} \in \mathbb{R}^{n}$, the function $x(t)=\phi\left(t, x_{0}\right)$ solves the initial-value problem

$$
\dot{x}=F(x) \quad \text { and } \quad x(0)=x_{0} .
$$

