Math 130B: ODE and Dynamical Systems, Spring 2019 Homework Assignment 2

Due Monday, April 15, 2019

1. For each of the following systems: (1) Find all the fixed points and the corresponding linearized systems; (2) Use the linearization theorem to classify these fixed points and determine their stabilities; and (3) Plot the phase portrait:
(i) $\dot{x}=x-y, \dot{y}=x^{2}-4$.
(ii) $\dot{x}=x y-1, \dot{y}=x-y^{3}$.
(iii) $\dot{x}=y^{2}-3 x+2, \dot{y}=x^{2}-y^{2}$.
2. Solve the system $\dot{x}=-x, \dot{y}=y+x^{2}$ to show that the stable and unstable manifolds are given by $S: y=-x^{2} / 3$ and $U: x=0$.
3. Solve the system $\dot{x}=-x, \dot{y}=-y+x^{2}$, $\dot{z}=z+x^{2}$ to find its stable and unstable manifolds.
4. Problem 5 of Exercises of Chapter 8 (page 185).
5. Problem 9 of Exercises of Chapter 8 (page 185).
6. Consider the system $\dot{x}=y-2 x, \dot{y}=\mu+x^{2}-y$.
(i) Sketch the nullclines.
(ii) Find and classify the bifurcations that occur as μ varies.
(iii) Sketch the phase portrait for selected values of μ to illustrate the the bifurcations.
