Math 130B: ODE and Dynamical Systems, Spring 2019 Homework Assignment 3

Due Monday, April 22, 2019

1. Consider the equation $\dot{x}=1+r x+x^{2}$, where $r \in \mathbb{R}$ is a parameter.
(1) Find the critical value $r=r_{c}$ at which a saddle-node bifurcation occurs.
(2) Sketch the birfaction diagram of the fixed point x vs. r.
2. Consider the equation $\dot{x}=x-r x(1-x)$, where $r \in \mathbb{R}$ is a parameter.
(1) Find the critical value $r=r_{c}$ at which a transcritical bifurcation occurs.
(2) Sketch the birfaction diagram of the fixed point x vs. r.
3. Consider the equation $\dot{x}=x+r x /\left(1+x^{2}\right)$, where $r \in \mathbb{R}$ is a parameter.
(1) Find the critical value $r=r_{c}$ at which a pitchfork bifurcation occurs.
(2) Sketch the birfaction diagram of the fixed point x vs. r.
4. Show that the system $\dot{x}=y+\mu x, \dot{y}=-x+\mu y-x^{2} y$ undergoes a (supercritical) Hopf bifurcation at $\mu=0$.
5. Problem 2 of Excieses of Chapter 9 (page 210).
6. Consider the system $\dot{x}=-2 y+y z, \dot{y}=x-x z, \dot{z}=x y$.
(1) Show that the fixed point $(0,0,0)$ is not hyperbolic.
(2) Find a Liapunov function to show that $(0,0,0)$ is stable. (Hint: $\operatorname{Try} V(x, y, z)=$ $a x^{2}+b y^{2}+c z^{2}$.)
