Math 130B: ODE and Dynamical Systems, Spring 2019 Homework Assignment 5

Due Monday, May 13, 2019

1. Identify all the points that lie in either an ω-limit set or an α-limit set of a solution trajectory of the system $\dot{r}=r^{3}-3 r^{2}+2 r, \dot{\theta}=1$.
2. The Flow Box Theorem (two-dimensional version): In a sufficiently small neighborhood of a non-equilibrium point of the system $\dot{x}=f(x, y), \dot{y}=g(x, y)$, where f and g are C^{1}-functions, there is a differentiable change of coordinates $u=u(x, y), v=v(x, y)$ such that $\dot{u}=0$ and $\dot{v}=1$.

Show that the nonlinear change of coordinates $u=x+y^{3}, v=y+y^{2}$ satisfies the requirement of the flow box theorem for the system

$$
\dot{x}=-\frac{3 y^{2}}{1+2 y}, \quad \dot{y}=\frac{1}{1+2 y}
$$

in the neighborhood of any point (x, y) with $y \neq 1 / 2$.
3. Consider the three-dimensional system in the cylindrical coordinates $\dot{r}=r(1-r)$, $\dot{\theta}=1, \dot{z}=-z$. Compute the Poincaré map $P: S \rightarrow S$ along the closed orbit $r=1$, $z=0$, where $S=\{(\theta, r, z): \theta=0, r>0, z \in \mathbb{R}\}$, and show that this closed orbit is asymptotically stable.
4. Consider the three-dimensional system in the cylindrical coordinates $\dot{r}=r(1-r)$, $\dot{\theta}=1, \dot{z}=z$. Compute again the Poincaré map $P: S \rightarrow S$ along the closed orbit $r=1, z=0$. where $S=\{(\theta, r, z): \theta=0, r>0, z \in \mathbb{R}\}$, What can you now say about the behavior of solutions near the closed orbit? Sketch the phase portrait for this system.
5. The system $\dot{r}=r\left(1-r^{2}\right), \dot{\theta}=1$ has a closed orbit $r=1$. Compute the Poincaré map defined on the positive x-axis for this orbit and determine its stability.

