Math 130B: ODE and Dynamical Systems, Spring 2019 Homework Assignment 6

Due Monday, May 20, 2019

1. Use Dulac's criterion to show that the system $\dot{x}=y, \dot{y}=-x-y+x^{2}+y^{2}$ has no closed orbits. (Hint: $\operatorname{try} g(x, y)=e^{-2 x}$.)
2. Consider the system $\dot{x}=x-y-x\left(x^{2}+2 y^{2}\right), \dot{y}=x+y-y\left(x^{2}+2 y^{2}\right)$.
(1) Write the system in the polar coordinates. (You can use $r \dot{r}=x \dot{x}+y \dot{y}$ and $\dot{\theta}=(\dot{y} x-\dot{x} y) / r^{2}$.)
(2) Use the trapping region method to show that this system has a closed orbit in the region defined by $r_{1}<r<r_{2}$ for some positive numbers r_{1} and r_{2} with $0<r_{1}<r_{2}$.
3. Show that the system $\dot{x}=x-y-x^{3}, \dot{y}=x+y-y^{3}$ has a periodic solution.
4. Consider the two-dimensional system $\dot{X}=A X-\|X\|^{2} X$, where A is a 2×2 constant real matrix with complex eigenvalues $\alpha \pm i \beta(\alpha, \beta \in \mathbb{R}$ and $\beta \neq 0)$. Prove that there exists at least one limit cycle if $\alpha>0$ and that there are none if $\alpha<0$.
5. Use the Liénard theorem to show that the van der Pol equation $\ddot{x}+\mu\left(x^{2}-1\right) \dot{x}+x=0$ has a unique stable limit cycle for any parameter $\mu>0$.
