Math 130B: ODE and Dynamical Systems, Spring 2019 Homework Assignment 7 Due Wednesday, May 29, 2019

- 1. Show that the system $\dot{x} = -\nu x + zy$, $\dot{y} = -\nu y + (z a)x$, $\dot{z} = 1 xy$, where $a, \nu > 0$ are parameters, is dissipative (i.e., the volume is contractive).
- 2. (A spherical trapping region for the Lorenz system.) Show that all trajectories of the Lorenz system eventually enter and remain inside a large sphere S of the form $x^2+y^2+(z-r-\sigma)^2=C$ for C sufficiently large. (Hint: Show that $x^2+y^2+(z-r-\sigma)^2$ decreases along trajectories for all (x, y, z) outside a certain fixed ellipsoid. Then pick C large enough so that the sphere S encloses this ellipsoid.)
- 3. Consider the Lorenz equations.
 - (1) Show that the characteristic equation for the eigenvalues of the Jacobian matrix at $C^+ = (\sqrt{b(r-1)}, \sqrt{b(r-1)}, r-1)$ and $C^- = (-\sqrt{b(r-1)}, -\sqrt{b(r-1)}, r-1)$ is

$$\lambda^3 + (\sigma + b + 1)\lambda^2 + (r + \sigma)b\lambda + 2b\sigma(r - 1) = 0.$$

(2) By seeking solutions of the form $\lambda = i\omega$, where ω is real, show that there is a pair of pure imaginary eigenvalues when

$$r = r_H = \sigma \left(\frac{\sigma + b + 3}{\sigma - b - 1} \right).$$

- (3) Find the third eigenvalue.
- 4. Show that the z-axis is an invariant line for the Lorenz equations. (In other words, a trajectory that starts on the z-axis stays on it forever.)