Math 130B: ODE and Dynamical Systems, Spring 2019 Homework Assignment 8

Due Friday, June 7, 2019

1. Find all the fixed points for the one-dimensional map $x_{n+1}=f\left(x_{n}\right)$ and determine their stabilities, where the function $f(x)$ is given by:
(1) $f(x)=x^{2}$;
(2) $f(x)=3 x-x^{3}$.
2. Show that the map $x_{n+1}=f\left(x_{n}\right)$ with $f(x)=1+(1 / 2) \sin x$ has a unique fixed point x^{*} that is globally stable (i.e., $x_{n} \rightarrow x^{*}$ for any x_{0}).
3. Show that the iteration $x_{n+1}=\cos x_{n}$ has a unique fixed point. Predict the stability of this fixed point by drawing the web diagram. Can you prove your statement?
4. Find possible periodic points with period $n=1$ or 2 for each of the following maps and classify them as attracting, repelling, or neither.
(1) $f(x)=x-x^{2}$;
(2) $f(x)=2\left(x-x^{2}\right)$.
5. Discuss the bifurcations that occur in the following families of maps at the indicated parameter value:
(1) $S_{\lambda}(x)=\lambda \sin x$ at $\lambda=1$;
(2) $E_{\lambda}(x)=\lambda e^{x}$ at $\lambda=1 / e$.
6. Assume that x_{0} lies on a cycle of period n for the map defined by $f(x)$. Show that

$$
\left(f^{n}\right)^{\prime}\left(x_{0}\right)=\prod_{i=0}^{n-1} f^{\prime}\left(x_{i}\right)
$$

where $x_{i}=f\left(x_{i-1}\right)(i=1, \ldots, n)$. Conclude that

$$
\left(f^{n}\right)^{\prime}\left(x_{0}\right)=\left(f^{n}\right)^{\prime}\left(x_{j}\right), \quad j=1, \ldots, n-1
$$

