Math 170C: Numerical Analysis of Ordinary Differential Equations Spring 2018

Review for Midterm Exam

Numerical Differentiation

1. The forward-difference $(h>0)$ and backward-difference $(h<0)$ formulas are given by

$$
f^{\prime}\left(x_{0}\right)=\frac{1}{h}\left[f\left(x_{0}+h\right)-f\left(x_{0}\right)\right]-\frac{h}{2} f^{\prime \prime}(\xi) .
$$

Exercise. Use the Taylor expansion to derive this formula.
Exercise. If $f(0)=1$ and $f(0.1)=0.2$, what is an approximation of $f^{\prime}(0)$? What is the maximal error (neglect the round-off error) of your approximation if $\left|f^{\prime \prime}(x)\right| \leq 0.1$ for all x ?
2. The central-difference formula (the three-point midpoint formula (4.5) on page 175) is

$$
f^{\prime}\left(x_{0}\right)=\frac{1}{2 h}\left[f\left(x_{0}+h\right)-f\left(x_{0}-h\right)\right]-\frac{h^{2}}{6} f^{\prime \prime \prime}(\xi)
$$

Exercise. Assume that $f^{\prime \prime \prime}$ is continuous. Derive this formula using Taylor's expansion. You need to use $\left[f^{\prime \prime \prime}\left(\xi_{1}\right)+f^{\prime \prime \prime}\left(\xi_{2}\right)\right] / 2=f^{\prime \prime \prime}(\xi)$. Justify this.
Exercise. If $f(0)=1, f(-0.1)=0.8$, and $f(0.1)=0.2$, what is an approximation of $f^{\prime}(0)$? If $\left|f^{\prime \prime \prime}(x)\right| \leq 4$ for all x, what is a good error bound (neglect the round-off error)?
Exercise. Study this formula in terms of round-off errors; cf. pages 178 and 179. Why the error now is controlled by $\varepsilon / h+h^{2} M / 6$?
3. The Lagrange interpolation leads to the $(n+1)$-point numerical differentiation formula

$$
f^{\prime}\left(x_{j}\right)=\sum_{k=0}^{n} f\left(x_{k}\right) L_{k}^{\prime}\left(x_{j}\right)+\frac{1}{(n+1)!} f^{(n+1)}\left(\xi_{j}\right) \prod_{k=0, k \neq j}^{n}\left(x_{j}-x_{k}\right), \quad j=0,1, \ldots, n,
$$

where $L_{k}(x)=(k=0, \ldots, n)$ are the basic Lagrange polynomials associated with $x_{0}, x_{1}, \ldots, x_{n}$. Exercise. Derive the three-point $(n=2)$ endpoint formula (4.4) on page 175.
Exercise. Suppose $f(0)=0, f(0.1)=0.2$, and $f(0.3)=0.4$. Find an approximate of $f^{\prime}(0)$.
4. The midpoint (also called the central-difference) formula for second-order derivative is

$$
f^{\prime \prime}\left(x_{0}\right)=\frac{1}{h^{2}}\left[f\left(x_{0}-h\right)+f\left(x_{0}+h\right)-2 f\left(x_{0}\right)\right]-\frac{h^{2}}{12} f^{(4)}(\xi)
$$

Exercise. Use Taylor's expansion to derive this formula.
Exercise. If $f(0)=0.4, f(-0.1)=0.7$, and $f(0.1)=0.2$, find the approximation of $f^{\prime \prime}(0)$.

Numerical Integration

1. Some concepts:
(1) What is a basic, and a composite, numerical integration rule?
(2) What is the degree of precision for a numerical integration rule?

Exercise. Find the numbers a, b, and c so that the numerical quadrature

$$
\int_{-2}^{2} f(x) d x \approx a f(-1)+b f(0)+c f(1)
$$

has the degree of precision as high as possible. What is the degree of precision of this quadrature rule with your values of a, b, and c ?
2. The basic mid-point rectangle formula is

$$
\int_{\alpha}^{\beta} f(x) d x=f\left(\frac{\alpha+\beta}{2}\right)(\beta-\alpha)+\frac{1}{24} f^{\prime \prime}(\xi)(\beta-\alpha)^{3} .
$$

Exercise. Derive this formula using Taylor's expansion.
Exercise. What is the degree of precision of this formula?
Exercise. Let $a<b$. Let $n \geq 2$ be an integer and $h=(b-a) / n$. Assume $f^{\prime \prime}$ is continuous on $[a, b]$. Drive the error term for the composite mid-point rectangle rule

$$
\int_{a}^{b} f(x) d x \approx h \sum_{j=1}^{n} f(a+(j-1 / 2) h) .
$$

3. The basic and composite trapezoid rules are:

$$
\begin{aligned}
\int_{\alpha}^{\beta} f(x) d x & =\frac{1}{2}[f(\alpha)+f(\beta)](\beta-\alpha)-\frac{1}{12} f^{\prime \prime}(\xi)(\beta-\alpha)^{3} \\
\int_{a}^{b} f(x) d x & =\frac{h}{2}\left[f(a)+f(b)+2 \sum_{j=1}^{n-1} f\left(x_{j}\right)\right]-\frac{b-a}{12} f^{\prime \prime}(\xi) h^{2},
\end{aligned}
$$

where $n \geq 2$ is an integer, $h=(b-a) / n$, and $x_{j}=a+j h(j=0,1, \ldots, n)$.
Exercise. What is the geometrical meaning of this formula?
4. The basic and composite Simpson's rules are

$$
\begin{aligned}
\int_{\alpha}^{\beta} f(x) d x & =\frac{\beta-\alpha}{6}\left[f(\alpha)+4 f\left(\frac{\alpha+\beta}{2}\right)+f(\beta)\right]-\frac{1}{2880} f^{(4)}(\xi)(\beta-\alpha)^{5} \\
\int_{a}^{b} f(x) d x & =\frac{h}{3}\left[f(a)+f(b)+2 \sum_{j=1}^{n / 2-1} f\left(x_{2 j}\right)+4 \sum_{j=1}^{n / 2} f\left(x_{2 j-1}\right)\right]-\frac{b-a}{180} f^{(4)}(\xi) h^{4}
\end{aligned}
$$

where $n \geq 2$ is an even integer, $h=(b-a) / n$, and $x_{j}=a+j h(j=0,1, \ldots, n)$.
Exercise. What is the degree of precision of this formula?
Exercise. Write down the pseudocode of this method.
Exercise. If $f(0)=1, f(0.1)=1.2, f(0.2)=1.4, f(0.3)=2$, and $f(0.4)=1.8$. Use the composite Simpson's rule (with $n=2$) to approximate the integral of f over $[0,0.4]$.
5. If $p_{n}(x)$ is the Lagrange interpolation of $f(x)$ at $x_{0}, x_{1}, \ldots, x_{n}$ in $[a, b]$, then the (closed) Newton-Cotes formula is constructed so that the integral of f over $[a, b]$ is approximated by the integral of $p_{n}(x)$ over $[a, b]$. Let $n \geq 1$ be an integer, $h=(b-a) / n, x_{i}=a+i h$ $(i=0,1, \ldots, n)$, and $L_{i}(x)(i=0,1, \ldots)$ the basic Lagrange polynomials associated with $x_{0}, x_{1}, \ldots, x_{n}$. Then the basic (closed) Newton-Cotes formula is

$$
\int_{a}^{b} f(x) d x=\sum_{i=0}^{n} a_{i} f\left(x_{i}\right)+e_{n} \quad \text { where } \quad e_{n}= \begin{cases}c_{n} h^{n+3} f^{(n+2)}(\xi) & \text { if } n \text { is even } \\ d_{n} h^{n+2} f^{(n+1)}(\xi) & \text { if } n \text { is odd }\end{cases}
$$

where c_{n} and d_{n} are some constants (cf. Theorem 4.2 on page 196), and $a_{i}=\int_{a}^{b} L_{i}(x) d x$.
Exercise. Why this formula is exact for a polynomial of degree $\leq n$?
Exercise. Why is the degree of precision of a Newton-Cotes formula?
Exercise. Let $n=2$ and derive Simpson's rule for the integration of $f(x)$ over $[-1,1]$ (without the error term).
6. What is an open Newton-Cotes formula?
7. For any $n \geq 1$, the n-point Gaussian quadrature (with error) is

$$
\int_{-1}^{1} f(x) d x \approx \sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

where $x_{1}, \ldots, x_{n} \in(-1,1)$ are the n distinct roots of the Legendre polynomial $P_{n}(x)$ and w_{i} are the integrals of the basic Lagrange interpolation polynomials $L_{i}(x)$ associated with these roots. Note that $\left\{P_{k}(x)\right\}_{k=0}^{\infty}$ are orthogonal polynomials.
Exercise. Prove this formula has degree of precision $2 n-1$. (See Theorem 4.7 on page 231.) Exercise. Use the composite 2-point Gaussian quadrature to approximate the integral of $f(x)=x^{4}$ on $[0,2]$ with 2 subintervals.

Richardson's Extrapolation

1. Suppose $M=N(h)+K_{2} h^{2}+K_{4} h^{4}+\cdots$. If you compute $N(h)$ and also $N(h / 2)$, then $N(h / 2)$ should approximate M better than $N(h)$. You may want to continue with computing $N(h / 4)$. But, instead, you can use Richardson's extrapolation to compute $\tilde{N}(h):=[4 N(h / 2)-N(h)] / 3$. Exercise. Expand $M=\tilde{N}(h)+\tilde{K}_{4} h^{4}+\cdots$. What is \tilde{K}_{4} in terms of K_{4} ?
Exercise. What is Richardson's extrapolation formula using $N(h)$ and $N(h / 3)$?
2. Exercise. Show that one step of Richardson's extrapolation of the trapezoidal rule of numerical integration is exactly Simpson's rule.

Local Truncation Errors in Solving Initial-Value Problems of ODE

We consider the initial-value problem for ODE: $y^{\prime}=f(t, y)(a \leq t \leq b)$ and $y(a)=\alpha$. Let $N \geq 1$ be an integer, $h=(b-a) / N$, and $t_{i}=a+i h(i=0,1, \ldots, N)$. A general numerical method has often the form

$$
\begin{aligned}
& w_{0}=\alpha, \\
& w_{i+1}=w_{i}+h \phi\left(t_{i}, w_{i}\right), \quad i=0,1, \ldots, N-1 .
\end{aligned}
$$

The truncation error for such a method is defined by

$$
\tau_{i+1}(h)=\frac{y\left(t_{i+1}\right)-y\left(t_{i}\right)}{h}-\phi\left(t_{i}, y\left(t_{i}\right)\right), \quad i=0,1, \ldots, N-1 .
$$

Note that the truncation error is defined using the exact solution $y=y(t)$.

Taylor's Methods for Solving Initial-Value Problems of ODE

1. Euler's method is defined by

$$
\begin{aligned}
& w_{0}=\alpha, \\
& w_{i+1}=w_{i}+h f\left(t_{i}, w_{i}\right), \quad i=0,1, \ldots, N-1 .
\end{aligned}
$$

If L is the Lipschitz constant for $f(t, y)$ in y and $\left|y^{\prime \prime}(t)\right| \leq M(a \leq t \leq b)$, then error bound is

$$
\left|y_{i}-w_{i}\right| \leq \frac{h M}{2 L}\left[e^{L\left(t_{i}-a\right)}-1\right], \quad i=0,1, \ldots, N .
$$

Exercise. If $f(t, y)=y+t$ and $y(0)=0$, find approximations of $y(0.1)$ and $y(0.2)$.
Exercise. Prove the error bound formula.
2. The general Taylor method of order n is given by

$$
\begin{aligned}
& w_{0}=\alpha, \\
& w_{i+1}=w_{i}+h T^{(n)}\left(t_{i}, w_{i}\right), \quad i=0,1, \ldots, N-1,
\end{aligned}
$$

where

$$
T^{(n)}(t, w)=f(t, w)+\frac{h}{2!} f^{\prime}(t, w)+\cdots+\frac{h^{n-1}}{n!} f^{(n-1)}(t, w)
$$

It is derived using Taylor's expansion
$y\left(t_{i+1}\right)=y\left(t_{i}\right)+h f\left(t_{i}, y\left(t_{i}\right)+\frac{h^{2}}{2!} f^{\prime}\left(t_{i}, y\left(t_{i}\right)\right)+\cdots+\frac{h^{n}}{n!} f^{(n-1)}\left(t_{i}, y\left(t_{i}\right)\right)+\frac{h^{n+1}}{(n+1)!} f^{(n)}\left(\xi_{i}, y\left(\xi_{i}\right)\right)\right.$.
Exercise. What is the local truncation error for this method?
Exercise. If $f(t, y)=t^{2}+\sin y$, what is $f^{\prime}(t, y)$?

Runge-Kutta Methods for Solving Initial-Value Problems of ODE

1. The midpoint method is a special Runge-Kutta method of order 2. It is given by

$$
\begin{aligned}
& w_{0}=\alpha \\
& w_{i+1}=w_{i}+h f\left(t_{i}+h / 2, w_{i}+(h / 2) f\left(t_{i}, w_{i}\right)\right), \quad i=0,1, \ldots, N-1 .
\end{aligned}
$$

Exercise. Let $f(t, y)=t+y(0 \leq t \leq 3), \alpha=0, h=1$. Compute w_{0}, w_{1} and w_{2}.
Exercise. What is the order of the local truncation error of this method?
2. The modified Euler's method is also a Runge-Kutta method of order 2. It is given by

$$
\begin{aligned}
& w_{0}=\alpha, \\
& w_{i+1}=w_{i}+\frac{h}{2}\left[f\left(t_{i}, w_{i}\right)+f\left(t_{i+1}, w_{i}+h f\left(t_{i}, w_{i}\right)\right)\right], \quad i=0,1, \ldots, N-1 .
\end{aligned}
$$

Exercise. Let $f(t, y)=t+y(0 \leq t \leq 3), \alpha=0, h=1$. Compute w_{0}, w_{1} and w_{2}.
Exercise. What is the order of the local truncation error of this method?
3. A commonly used Runge-Kutta method of order 4 is given by

$$
\begin{aligned}
w_{0} & =\alpha, \\
k_{1} & =h f\left(t_{i}, w_{i}\right), \\
k_{2} & =h f\left(t_{i}+h / 2, w_{i}+k_{1} / 2\right), \\
k_{3} & =h f\left(t_{i}+h / 2, w_{i}+k_{2} / 2\right), \\
k_{4} & =h f\left(t_{i+1}, w_{i}+k_{3}\right), \\
w_{i+1} & =w_{i}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right), \quad i=0,1, \ldots, N-1 .
\end{aligned}
$$

Exercise. Write a pseudocode for this method.
Exercise. Let $f(t, y)=t+y(0 \leq t \leq 3), \alpha=0, h=1$. Compute w_{0} and w_{1}.

Multistep Methods for Solving Initial-Value Problems of ODE

1. Examples. An explicit fourth-order Adams-Bashforth method (cf. (5.25) on page 303).

An implicit fourth-order Adams-Bashforth method (cf. (5.26) on page 303).

