
Math 170C: Numerical Analysis of Ordinary Differential Equations
Spring 2018

Review for Midterm Exam

Numerical Differentiation

1. The forward-difference (h > 0) and backward-difference (h < 0) formulas are given by

f ′(x0) =
1

h
[f(x0 + h)− f(x0)]−

h

2
f ′′(ξ).

Exercise. Use the Taylor expansion to derive this formula.
Exercise. If f(0) = 1 and f(0.1) = 0.2, what is an approximation of f ′(0)? What is the
maximal error (neglect the round-off error) of your approximation if |f ′′(x)| ≤ 0.1 for all x?

2. The central-difference formula (the three-point midpoint formula (4.5) on page 175) is

f ′(x0) =
1

2h
[f(x0 + h)− f(x0 − h)]− h2

6
f ′′′(ξ).

Exercise. Assume that f ′′′ is continuous. Derive this formula using Taylor’s expansion. You
need to use [f ′′′(ξ1) + f ′′′(ξ2)]/2 = f ′′′(ξ). Justify this.
Exercise. If f(0) = 1, f(−0.1) = 0.8, and f(0.1) = 0.2, what is an approximation of f ′(0)?
If |f ′′′(x)| ≤ 4 for all x, what is a good error bound (neglect the round-off error)?
Exercise. Study this formula in terms of round-off errors; cf. pages 178 and 179. Why the
error now is controlled by ε/h+ h2M/6?

3. The Lagrange interpolation leads to the (n+ 1)-point numerical differentiation formula

f ′(xj) =
n∑
k=0

f(xk)L
′
k(xj) +

1

(n+ 1)!
f (n+1)(ξj)

n∏
k=0,k 6=j

(xj − xk), j = 0, 1, . . . , n,

where Lk(x) = (k = 0, . . . , n) are the basic Lagrange polynomials associated with x0, x1, . . . , xn.
Exercise. Derive the three-point (n = 2) endpoint formula (4.4) on page 175.
Exercise. Suppose f(0) = 0, f(0.1) = 0.2, and f(0.3) = 0.4. Find an approximate of f ′(0).

4. The midpoint (also called the central-difference) formula for second-order derivative is

f ′′(x0) =
1

h2
[f(x0 − h) + f(x0 + h)− 2f(x0)]−

h2

12
f (4)(ξ).

Exercise. Use Taylor’s expansion to derive this formula.
Exercise. If f(0) = 0.4, f(−0.1) = 0.7, and f(0.1) = 0.2, find the approximation of f ′′(0).

Numerical Integration

1. Some concepts:
(1) What is a basic, and a composite, numerical integration rule?
(2) What is the degree of precision for a numerical integration rule?

Exercise. Find the numbers a, b, and c so that the numerical quadrature∫ 2

−2
f(x) dx ≈ af(−1) + bf(0) + cf(1)

has the degree of precision as high as possible. What is the degree of precision of this quadra-
ture rule with your values of a, b, and c?



2. The basic mid-point rectangle formula is∫ β

α
f(x) dx = f

(
α+ β

2

)
(β − α) +

1

24
f ′′(ξ)(β − α)3.

Exercise. Derive this formula using Taylor’s expansion.
Exercise. What is the degree of precision of this formula?
Exercise. Let a < b. Let n ≥ 2 be an integer and h = (b− a)/n. Assume f ′′ is continuous on
[a, b]. Drive the error term for the composite mid-point rectangle rule∫ b

a
f(x) dx ≈ h

n∑
j=1

f (a+ (j − 1/2)h) .

3. The basic and composite trapezoid rules are:∫ β

α
f(x) dx =

1

2
[f(α) + f(β)] (β − α)− 1

12
f ′′(ξ)(β − α)3;

∫ b

a
f(x) dx =

h

2

f(a) + f(b) + 2
n−1∑
j=1

f(xj)

− b− a
12

f ′′(ξ)h2,

where n ≥ 2 is an integer, h = (b− a)/n, and xj = a+ jh (j = 0, 1, . . . , n).
Exercise. What is the geometrical meaning of this formula?

4. The basic and composite Simpson’s rules are∫ β

α
f(x) dx =

β − α
6

[
f(α) + 4f

(
α+ β

2

)
+ f(β)

]
− 1

2880
f (4)(ξ)(β − α)5,

∫ b

a
f(x) dx =

h

3

f(a) + f(b) + 2

n/2−1∑
j=1

f(x2j) + 4

n/2∑
j=1

f(x2j−1)

− b− a
180

f (4)(ξ)h4,

where n ≥ 2 is an even integer, h = (b− a)/n, and xj = a+ jh (j = 0, 1, . . . , n).
Exercise. What is the degree of precision of this formula?
Exercise. Write down the pseudocode of this method.
Exercise. If f(0) = 1, f(0.1) = 1.2, f(0.2) = 1.4, f(0.3) = 2, and f(0.4) = 1.8. Use the
composite Simpson’s rule (with n = 2) to approximate the integral of f over [0, 0.4].

5. If pn(x) is the Lagrange interpolation of f(x) at x0, x1, . . . , xn in [a, b], then the (closed)
Newton–Cotes formula is constructed so that the integral of f over [a, b] is approximated
by the integral of pn(x) over [a, b]. Let n ≥ 1 be an integer, h = (b − a)/n, xi = a + ih
(i = 0, 1, . . . , n), and Li(x) (i = 0, 1, . . . ) the basic Lagrange polynomials associated with
x0, x1, . . . , xn. Then the basic (closed) Newton–Cotes formula is∫ b

a
f(x) dx =

n∑
i=0

aif(xi) + en where en =

{
cnh

n+3f (n+2)(ξ) if n is even,

dnh
n+2f (n+1)(ξ) if n is odd,

where cn and dn are some constants (cf. Theorem 4.2 on page 196), and ai =

∫ b

a
Li(x) dx.

Exercise. Why this formula is exact for a polynomial of degree ≤ n?
Exercise. Why is the degree of precision of a Newton–Cotes formula?
Exercise. Let n = 2 and derive Simpson’s rule for the integration of f(x) over [−1, 1] (without
the error term).
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6. What is an open Newton–Cotes formula?
7. For any n ≥ 1, the n-point Gaussian quadrature (with error) is∫ 1

−1
f(x) dx ≈

n∑
i=1

wif(xi),

where x1, . . . , xn ∈ (−1, 1) are the n distinct roots of the Legendre polynomial Pn(x) and wi
are the integrals of the basic Lagrange interpolation polynomials Li(x) associated with these
roots. Note that {Pk(x)}∞k=0 are orthogonal polynomials.
Exercise. Prove this formula has degree of precision 2n− 1. (See Theorem 4.7 on page 231.)
Exercise. Use the composite 2-point Gaussian quadrature to approximate the integral of
f(x) = x4 on [0, 2] with 2 subintervals.

Richardson’s Extrapolation

1. Suppose M = N(h)+K2h
2 +K4h

4 + · · · . If you compute N(h) and also N(h/2), then N(h/2)
should approximate M better than N(h). You may want to continue with computing N(h/4).
But, instead, you can use Richardson’s extrapolation to compute Ñ(h) := [4N(h/2)−N(h)]/3.
Exercise. Expand M = Ñ(h) + K̃4h

4 + · · · . What is K̃4 in terms of K4?
Exercise. What is Richardson’s extrapolation formula using N(h) and N(h/3)?

2. Exercise. Show that one step of Richardson’s extrapolation of the trapezoidal rule of numer-
ical integration is exactly Simpson’s rule.

Local Truncation Errors in Solving Initial-Value Problems of ODE

We consider the initial-value problem for ODE: y′ = f(t, y) (a ≤ t ≤ b) and y(a) = α. Let N ≥ 1
be an integer, h = (b − a)/N , and ti = a + ih (i = 0, 1, . . . , N). A general numerical method has
often the form

w0 = α,

wi+1 = wi + hφ(ti, wi), i = 0, 1, . . . , N − 1.

The truncation error for such a method is defined by

τi+1(h) =
y(ti+1)− y(ti)

h
− φ(ti, y(ti)), i = 0, 1, . . . , N − 1.

Note that the truncation error is defined using the exact solution y = y(t).

Taylor’s Methods for Solving Initial-Value Problems of ODE

1. Euler’s method is defined by

w0 = α,

wi+1 = wi + hf(ti, wi), i = 0, 1, . . . , N − 1.

If L is the Lipschitz constant for f(t, y) in y and |y′′(t)| ≤M (a ≤ t ≤ b), then error bound is

|yi − wi| ≤
hM

2L

[
eL(ti−a) − 1

]
, i = 0, 1, . . . , N.

Exercise. If f(t, y) = y + t and y(0) = 0, find approximations of y(0.1) and y(0.2).
Exercise. Prove the error bound formula.
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2. The general Taylor method of order n is given by

w0 = α,

wi+1 = wi + hT (n)(ti, wi), i = 0, 1, . . . , N − 1,

where

T (n)(t, w) = f(t, w) +
h

2!
f ′(t, w) + · · ·+ hn−1

n!
f (n−1)(t, w).

It is derived using Taylor’s expansion

y(ti+1) = y(ti)+hf(ti, y(ti)+
h2

2!
f ′(ti, y(ti))+ · · ·+ hn

n!
f (n−1)(ti, y(ti))+

hn+1

(n+ 1)!
f (n)(ξi, y(ξi)).

Exercise. What is the local truncation error for this method?
Exercise. If f(t, y) = t2 + sin y, what is f ′(t, y)?

Runge-Kutta Methods for Solving Initial-Value Problems of ODE

1. The midpoint method is a special Runge-Kutta method of order 2. It is given by

w0 = α,

wi+1 = wi + hf (ti + h/2, wi + (h/2)f(ti, wi)) , i = 0, 1, . . . , N − 1.

Exercise. Let f(t, y) = t+ y (0 ≤ t ≤ 3), α = 0, h = 1. Compute w0, w1 and w2.
Exercise. What is the order of the local truncation error of this method?

2. The modified Euler’s method is also a Runge-Kutta method of order 2. It is given by

w0 = α,

wi+1 = wi +
h

2
[f(ti, wi) + f(ti+1, wi + hf(ti, wi))] , i = 0, 1, . . . , N − 1.

Exercise. Let f(t, y) = t+ y (0 ≤ t ≤ 3), α = 0, h = 1. Compute w0, w1 and w2.
Exercise. What is the order of the local truncation error of this method?

3. A commonly used Runge-Kutta method of order 4 is given by

w0 = α,

k1 = hf(ti, wi),

k2 = hf(ti + h/2, wi + k1/2),

k3 = hf(ti + h/2, wi + k2/2),

k4 = hf(ti+1, wi + k3),

wi+1 = wi +
1

6
(k1 + 2k2 + 2k3 + k4), i = 0, 1, . . . , N − 1.

Exercise. Write a pseudocode for this method.
Exercise. Let f(t, y) = t+ y (0 ≤ t ≤ 3), α = 0, h = 1. Compute w0 and w1.

Multistep Methods for Solving Initial-Value Problems of ODE

1. Examples. An explicit fourth-order Adams–Bashforth method (cf. (5.25) on page 303).
An implicit fourth-order Adams–Bashforth method (cf. (5.26) on page 303).
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