2. \(\vec{w} = \begin{bmatrix} 3 \\ -1 \\ -5 \end{bmatrix}, \quad \vec{x} = \begin{bmatrix} 6 \\ -2 \\ 3 \end{bmatrix} \)

\[\vec{w} \cdot \vec{w} = 3^2 + (-1)^2 + (-5)^2 = 35 \]

\[\vec{w} \cdot \vec{x} = \vec{x} \cdot \vec{w} = (6 \cdot 3) + (2 \cdot 1 + (-5 \cdot 3) = 18 + 2 - 15 = 5 \]

\[\frac{\vec{x} \cdot \vec{w}}{\vec{w} \cdot \vec{w}} = \frac{5}{35} = \frac{1}{7} \]

7. \[||\vec{w}|| = \sqrt{\vec{w} \cdot \vec{w}} = \sqrt{35} \]

10. \[\vec{v} = \begin{bmatrix} -6 \\ 4 \\ -3 \end{bmatrix} \]

\[||\vec{v}|| = \sqrt{(-6)^2 + 4^2 + (-3)^2} = \sqrt{61} \]

\[\hat{\vec{v}} = \frac{1}{\sqrt{61}} \begin{bmatrix} -6 \\ 4 \\ -3 \end{bmatrix} \]

15. \[\vec{a} = \begin{bmatrix} 8 \\ -5 \end{bmatrix}, \quad \vec{b} = \begin{bmatrix} -2 \\ -3 \end{bmatrix} \]

\[\vec{a} \cdot \vec{b} = -16 + 15 = -1 \]

19. a) True. By definition
b) True. By definition
c) True:
\[||\vec{u} - \vec{v}|| = ||\vec{u}|| + ||\vec{v}|| - 2 \vec{u} \cdot \vec{v} \]
\[||\vec{u} - (-\vec{v})|| = ||\vec{u} + \vec{v}|| = ||\vec{u}|| + ||\vec{v}|| + 2 \vec{u} \cdot \vec{v} \]
If \(\vec{u} \neq \vec{v} \) are \(\perp \), \(\vec{u} \cdot \vec{v} = 0 \), so \[||\vec{u} - \vec{v}|| = ||\vec{u} + \vec{v}|| \]
d) False:
Let \(\vec{A} = \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} \)
null \(A \) has the vector \(\vec{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}^T \)
because \(A\vec{u} = \vec{0} \)
col \(A \) has the vector \(\vec{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}^T \)
\(\vec{u} \cdot \vec{v} = 1 \), so \(\vec{u} \) and \(\vec{v} \) are not \(\perp \)
e) True:
\[\vec{u} = C_1 \vec{v}_1 + C_2 \vec{v}_2 + \cdots + C_p \vec{v}_p; \quad \vec{v}_i \in \textbf{W} \]

\[\vec{x} \cdot \vec{v}_1 = \vec{x} \cdot \vec{v}_2 = \cdots = \vec{x} \cdot \vec{v}_p \text{ implies that} \]
\[\vec{x} \cdot \vec{w} = 0 + 0 + \cdots + 0 \]
\[\text{p-times} \]
\[\vec{x} \cdot \vec{w} = 0 \text{ for all possible } \vec{w} \text{ in } \textbf{W} \]
which means that \[\vec{x} \in \textbf{W}^\perp \]

22. \[\vec{u} = (u_1, u_2, u_3) \]

\[\vec{u} \cdot \vec{u} > 0 \text{ because } \vec{u} \cdot \vec{u} = u_1^2 + u_2^2 + u_3^2 \]
and \[u_1, u_2, \text{ and } u_3 \] are all \(> 0 \). The sum of positive numbers is also positive.
\[\vec{u} \cdot \vec{u} = 0 \text{ iff } \vec{u} = \vec{0} \]

24. \[||\vec{u} + \vec{v}||^2 + ||\vec{u} - \vec{v}||^2 \text{ (look at Prob. 19e)} \]
\[= ||\vec{u}||^2 + ||\vec{v}||^2 + 2\vec{u} \cdot \vec{v} + ||\vec{u}||^2 + ||\vec{v}||^2 - 2\vec{u} \cdot \vec{v} \]
\[= 2||\vec{u}||^2 + 2||\vec{v}||^2 \]

29. Exact argument as Prob. 19e)