Math 210A: Mathematical Methods in Physical Sciences and Engineering (Part A) - References

Math 210: Mathematical Methods in Physical Sciences and Engineering
Fall 2017, Winter 2018, and Spring 2018
(Instructor: Bo Li)


Sequences and Series
  1. W. Rudin, Principles of Mathematical Analysis, 3rd edition, McGraw-Hill, 1976.
  2. P. M. Fitzpatrick, Advanced Calculus, 2nd ed., Amer. Math. Soc., 2009.
  3. G. B. Folland, Real Analysis: Modern Techniques and Their Applications, 2n ed., Wiley, 1999.
Matrix Techniques
  1. J. N. Franklin, Matrix Theory, Prentice-Hall, 1968.
  2. G. Strang, Linear Algebra and its Applications, 4th ed., Brooks Cole, 2005.
  3. W. Greub, Linear Algebra, 4th ed., Springer-Verlag, 1975.
  4. R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1985.
Hilbert Spaces
  1. E. Kreyszig, Introductory Functional Analysis with Applications, Joh Wiley & Sons, 1978.
  2. R. E. Edwards, Functional Analysis, Dover, 1994.
  3. G. Helmberg, Introduction to Spectral Theory in Hilbert Space, North-Holland, 1969.
Approximation Theory and Methods, Orthogonal Polynomials
  1. E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, New York, 1966.
  2. P. J. Davis, Interpolation and Approximation, Dover, 1975.
  3. T. J. Rivlin, Introduction to the Approximation of Functions, Dover, 1987.
  4. G. Szgo, Orthogonal Polynomials, 3rd ed., Amer. Math. Soc., 1967.
Fourier Series and Integrals
Partial Differential Equations
  1. W. A. Strauss, Partial Differential Equations. An Introduction, 2nd ed., Wiley, 2008.
  2. L. C. Evans, Partial Differential Equations, Amer. Math. Soc., 1998.
  3. R. Courant and D. Hilbert, Mathods of Mathematical Physics, Vol. II, Wiley, 1989.
  4. F. John, Partial Differential Equations, Springer, 1982.
  5. R. C. McOwen, Partial Differential Equations. Methods and Applications, 2nd ed., Pearson, 2002.
  6. G. B. Whitham, Linear and Nonlinear Waves, Wiley, 1999.
Ordinary Differential Equations and Dynamical Systems
  1. V. I. Arnold, Mathematical Methods of Classical Mechanics, 2nd ed., Springer-Verlag, New York, 1989.
  2. V. I. Arnold, Ordinary Differential Equations, Springer-Verlag, 1992.
  3. G. Birkhoff and G.-C. Rota, Ordinary Differential Equations, 3rd ed., Wiely, 1978.
  4. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vectors Fiedls, Springer-Verlag, 1983.
  5. M. W. Hirsch, S. Smale, and R. L. Devaney, Differential Equations, Dynamical Systems, and An Introduction to Chaos, 2nd ed., Elsevier, 2004.
  6. L. Perko, Differential Equations and Dynamical Systems, 3rd ed., Springer-Verlag, 2001.
  7. S. H. Strogatz, Nonlinear Dynamics and Chaos, Perseus Books Publishing, LLC, 1994.
Complex Analysis
  1. L. V. Ahlfors, Complex Analysis, McGraw-Hill, 1953.
  2. J. B. Conway, Functions of One Complex Variable (Graduate Texts in Mathematics - Vol 11), vol. 1, 2nd ed., Springer, 1978.
  3. E. B. Saff and A. D. Snider, Fundamentals of Complex Analysis for Mathemtics, Science, and Engineering, 2nd ed., Prentice Hall, 1993.

Last updated by Bo Li on October 17, 2017.