Math 210C Homework 1 Solutions

Yucheng Tu

April 2018

Problem 1. For each of the following partial differential equations, find out its order and determine if it is a linear equation:
Solution.
(1) $u_{x}+u u_{y}=0$ with $u=u(x, y)$;

First order and nonlinear since $u u_{y}$ is not linear.
(2) $u_{t}-\Delta u=u(u-1 / 2)(u-1)$ with $u=u(x, t)$ and $x \in \mathbb{R}^{n}$;

Second order and nonlinear since $u(u-1 / 2)(u-1)$ is nonlinear.
(3) $\Delta u=\sin |x|$ with $u=u(x)$ and $x \in \mathbb{R}^{n}$;

Second order and linear since $\sin |x|$ is not a function of u.
(4) $\Delta u-\sinh (u)=0$ with $u=u(x, y, z)$;

Second order and nonlinear since $\sinh (u)$ is not linear in u.
(5) $u_{t t}-\Delta u+\Delta^{2} u=0$ with $u=u(x, t)$ and $x \in \mathbb{R}^{n}$;

Fourth order due to Δ^{2} and linear.
Problem 2. Let $u \in C^{2}\left(\mathbb{R}^{n}\right)$. Prove that $\nabla \cdot \nabla u=\Delta u$.
Proof. Standard fact.

Problem 3. Let $\Omega=(0,1) \times(0,1)$. Show that there exists no $u \in C^{2}(\bar{\Omega})$ such that $\Delta u=1$ in Ω and $u=0$ on $\partial \Omega$.

Proof. The proof is contained in Page 10 of Professor's notes .

Problem 4. Verify that $u_{n}(x, y)=\sin (n x) \sinh (n y)$ is a solution to $\Delta u=0$ for any $n>0$.

Proof. We have $[\sin (n x)]^{\prime \prime}=-n^{2} \sin (n x)$ and $[\sinh (n y)]^{\prime \prime}=n^{2} \sinh (n y)$. Hence $\Delta u=u_{x x}+u_{y y}=\left(-n^{2}+n^{2}\right) \sin (n x) \sinh (n y)=0$.

Problem 5. Let $u=u(x, y)$. Solve $x u_{x}+u=0$.
Solution. The equation of characteristic curve is

$$
\frac{d y}{d x}=\frac{1}{x}
$$

hence $y=\ln |x|+C$. It turns out that $u(x, y)=f(y-\ln |x|-C)$ for some differentiable function f.

Problem 6. Let $u=u(x, y)$ and solve the equation $3 u_{y}+u_{x y}=0$.
Solution. Let $v=u_{y}$. We have $3 v+v_{x}=0$, which implies $\left(e^{3 x} \cdot v\right)_{x}=0$. Hence $e^{3 x} v(x, y)=f(y)$ for an arbitrary function f. Now integrating v with respect to y we have

$$
u(x, y)=\int e^{-3 x} f(y) d y=g(y) e^{-3 x}+h(x)
$$

where h is an arbitrary function of x which is the integral constant when integrating with respect to y.

Problem 7. Let $u=u(x, y)$. Find the general solution to the equation $u_{x}+2 x y^{2} u_{y}=0$.

Solution. Consider a new variable t so that the characteristic curve is $x=x(t)$ and $y=y(t)$. Then we have $x^{\prime}(t)=1, y^{\prime}(t)=2 x y^{2}$ and $u_{t}=x^{\prime}(t) u_{x}+y^{\prime}(t) u_{y}=$ 0 . Solving the equation

$$
\frac{d y}{d x}=\frac{y^{\prime}(t)}{x^{\prime}(t)}=2 x y^{2}
$$

we get $d y / y^{2}=2 x d x$. Hence the characteristic curve is $-1 / y=x^{2}+C$ and u is a constant along the curve. Hence $u(x, y)=f\left(x^{2}+1 / y\right)$ for some differentiable function f.

Problem 8. Let $u=u(x, y)$. Solve the equation $\sqrt{1-x^{2}} u_{x}+u_{y}=0$ with $u(0, y)=e^{-y^{2}}$.

Solution. Like previous problem we write down $x^{\prime}(t)=\sqrt{1-x^{2}}$ and $y^{\prime}(t)=1$. Hence

$$
\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}
$$

The solution to the above eequation is $y=\arcsin (x)+C$. hence the solution is $u(x, y)=f(y-\arcsin (x))$. Plugging in $u(0, y)=f(y-0)=e^{-y^{2}}$, we have

$$
u(x, y)=e^{-(y-\arcsin (x))^{2}}
$$

