Math 210C Homework 2 Solutions

Yucheng Tu

April 2018

Problem 1. Consider the initial-value problem

$$
\begin{cases}u_{x}+y u_{y}=0 & \text { for } x, y \in \mathbb{R} \\ u(x, 0)=\phi(x) & \text { for } x \in \mathbb{R}\end{cases}
$$

Prove the following:
(1) If $\phi(x)=x(x \in \mathbb{R})$ then this initial-value problem does not have a solution;
(2) If $\phi(x)=1(x \in \mathbb{R})$ then this initial-value problem has many solutions.

Proof. The characteristic curve for this equation satisfies $\frac{d y}{d x}=y$, hence these are a family of exponential curves

$$
y=C e^{x} \quad C \in \mathbb{R}
$$

hence the initial condition is given on the characteristic curve $C=0$. For the equation to be solvable ϕ needs to be constant. Hence if $\phi(x)=x$ then this equation has no solution, but as $\phi(x)=1$ we can construct many solutions like $u(x, y)=f\left(y e^{-x}\right)$ where f is a differentiable function satisfying $f(0)=1$.

Problem 2. . Solve the following Cauchy problems of first-order equations:
(1) $u_{x}+x u_{y}-u_{z}=u$ and $u(x, y, 1)=x+y$;

Solution. We find that the characteristic curve satisfies $\dot{x}=1, \dot{y}=x$ and $\dot{z}=-1$. Let $w(s)=u(x(s), y(s), z(s))$ and we have $\dot{w}=w$. Hence the curve starting from the initial hypersurface is

$$
(x(s), y(s), z(s))=\left(x_{0}+s, y_{0}+\frac{1}{2} s^{2}+x_{0} s, 1-s\right)
$$

and along the characteristic curve we have $w=w(0) e^{s}$. We have $s=1-z$ and as we plug this into $x(s)$ and $y(s)$ we have

$$
\left(x_{0}, y_{0}\right)=\left(x+z-1, y-\left(x+\frac{z-1}{2}\right)(1-z)\right)
$$

Hence we have $w(0)=x_{0}+y_{0}=x z+y+\frac{z^{2}-1}{2}$. Finally we have

$$
u(x, y, z)=w(0) e^{1-z}=\left(x z+y+\frac{z^{2}-1}{2}\right) e^{1-z}
$$

(2) $u u_{x}+y u_{y}=x$ and $u(x, 1)=2 x$.

Solution. We find that the characteristic curve satisfies $\dot{x}=u$ and $\dot{y}=y$. Let $z(s)=u(x(s), y(s))$ and we have $\dot{z}=\dot{u}=x$. Hence we have

$$
\left\{\begin{array}{l}
x(s)=\frac{x_{0}+z_{0}}{2} e^{s}+\frac{x_{0}-z_{0}}{2} e^{-s} \\
y(s)=y_{0} e^{s} \\
z(s)=\frac{x_{0}+z_{0}}{2} e^{s}-\frac{x_{0}-z_{0}}{2} e^{-s}
\end{array}\right.
$$

We set $s=0$ on initial hypersurface $\left(x_{0}, y_{0}\right)=\left(x_{0}, 1\right)$, hence $e^{s}=y$ and by the fact that $z_{0}=u\left(x_{0}, 1\right)=2 x_{0}$ we get from the first equation on $x(s)$:

$$
x_{0}=\frac{z_{0}}{2}=\frac{2 x}{3 y+\frac{1}{y}}
$$

Pluging this into the equation of $z(s)$ we get

$$
u(x, y)=z(s)=\frac{3 x}{3 y+\frac{1}{y}} y-\frac{x}{3 y+\frac{1}{y}} \frac{1}{y}=\frac{3 y^{2}-1}{3 y^{2}+1} x
$$

Problem 3. Classify each of the following second-order equations into elliptic, hyperbolic, or parabolic equations:
(1) $2 u_{x x}-6 u_{x y}+3 u_{y y}=0$;

Hyperbolic, since $2 \cdot 3-\left(\frac{6}{2}\right)^{2}<0$.
(2) $u_{x x}-4 u_{x y}+4 u_{y y}=0$;

Parabolic, since $1 \cdot 4-\left(\frac{4}{2}\right)^{2}=0$.
(3) $2 u_{x x}-u_{x y}+3 u_{y y}=0$;

Elliptic, since $2 \cdot 3-\left(\frac{1}{2}\right)^{2}>0$.
Problem 4. Solve Laplace's equation on the upper half plane $\{(x, y): y>0\}$ with the boundary condition $u(x, 0)=1(-\infty<x<\infty)$.

Solution. The answer is highly nonunique. For example we can choose a linear combination of harmonic polynomials which contains no single x^{n} terms (e.g. we take $3 x^{2} y-y^{3}$ instead of $x^{3}-3 x y^{2}$), so that they take value of zero on x-axis, then adding 1 will give a solution to this problem.

Problem 5. Let a and b be two positive numbers with $a<b$. Solve Poisson's equation $\Delta u=1$ in $a<r<b$ with the boundary condition $u=0$ on the circles $r=a$ and $r=b$, where $r=\sqrt{x^{2}+y^{2}}$.

Solution. Rewriting the Laplacian in polar coordinates we have

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=1
$$

Since the boundary condition does not depend on θ, if we define $\tilde{u}(r, \theta)=$ $u\left(r, \theta+\theta_{0}\right)$ as a rotation of the original solution, then $\tilde{u}=u=0$ on the boundary, and $\Delta(\tilde{u}-u)=0$. Hence $\tilde{u}=u$ i.e. u is independent of θ. Hence $u(r, \theta)=f(r)$ and f satisfies

$$
\left\{\begin{array}{l}
\frac{1}{r} \frac{d}{d r}\left(r \frac{d f}{d r}\right)=1 \\
f(a)=f(b)=0
\end{array}\right.
$$

Solving the above ODE we have

$$
f(r)=\frac{r^{2}}{2}+c \log (r)+d
$$

where c and d are constants adjusted to the boundary conditions $f(a)=f(b)=$ 0 . Finally we have $u(r, \theta)=f(r)$.

Problem 6. Solve the one-dimensional eigenvalue problem $-u^{\prime \prime}=\lambda u$ on $(0, L)$ and $u^{\prime}(0)=u^{\prime}(L)=0$ for some given $L>0$.

Solution. Multiply each side by u and from integration by part we see

$$
\int_{0}^{L}-u^{\prime \prime} u=-\left.u^{\prime} u\right|_{0} ^{L}+\int_{0}^{L}\left(u^{\prime}\right)^{2}=\int_{0}^{L}\left(u^{\prime}\right)^{2}=\lambda \int_{0}^{L} u^{2}
$$

hence $\lambda \geq 0$ and $\lambda=0$ means u is a constant. When $\lambda>0$ we try $u(x)=$ $A \sin (k x)+B \cos (k x)$ where A, B and k are constants. Plugging this into the equation we have $k^{2}=\lambda$ and

$$
k A \cos (k \cdot 0)-k B \sin (k \cdot 0)=k A \cos (k L)-k B \sin (k L)=0
$$

Hence $k A=0$ and $k L=n \pi$ for $n \in \mathbb{Z}$. Hence the solution is

$$
u(x)=B \cos \left(\frac{n \pi x}{L}\right)
$$

with $\lambda=n^{2} \pi^{2} / L^{2}$ for $n \in \mathbb{Z}$.
Problem 7. Use the method of separation of variables to solve the following boundary-value problem of Laplace's equation:

$$
\begin{cases}u_{x x}+u_{y y}=0 & \text { for } 0<x<\pi \text { and } 0<y<\pi \\ u_{x}(0, y)=0 \text { and } u_{x}(\pi, y)=0 & \text { for } 0<y<\pi \\ u(x, 0)=0 \text { and } u(x, \pi)=g(x) & \text { for } 0<x<\pi\end{cases}
$$

where $g(x)$ is a given, continuous function on $[0, \pi]$.
Solution. Suppose $u(x, y)=X(x) Y(y)$ for some functions X and Y. Using Laplace equation we have $X^{\prime \prime} Y+X Y^{\prime \prime}=0$, hence

$$
-\frac{X^{\prime \prime}}{X}=\frac{Y^{\prime \prime}}{Y}=\lambda
$$

for some constant λ. Together with the boundary condition for u_{x}, it follows from Problem 6 that

$$
X(x)=A_{n} \cos (n x) \quad n \in \mathbb{Z}
$$

This also means $\lambda=n^{2} \geq 0$. Hence solving Y we have $Y(y)=\sinh (n y)$ for $n>0$, and $Y(y)=y$ for $n=0$. To determine these coefficients we use orthogonality of the set $\{\cos (n x) \mid n \in \mathbb{Z}\}$. Representing u as

$$
u(x, y)=A_{0} y+\sum_{n=1}^{\infty} A_{n} \cos (n x) \sinh (n y)
$$

We take sum only over \mathbb{Z}^{+}because of the parity of \cos and sinh. Pluging in $u(x, \pi)=g(x)$ we have $g(x)=A_{0} \pi+\sum_{n} A_{n} \sinh (n \pi) \cos (n x)$. We have

$$
\begin{aligned}
\int_{0}^{\pi} g(x) \cos (m x) d x & =\int_{0}^{\pi}\left[A_{0} \pi+\sum_{n=1}^{\infty} A_{n} \sinh (n \pi) \cos (n x)\right] \cos (m x) d x \\
& =\int_{0}^{\pi} A_{0} \pi \cos (m x) d x+\sum_{n=1}^{\infty} A_{n} \sinh (n \pi) \int_{0}^{\pi} \cos (n x) \cos (m x) d x \\
& = \begin{cases}\frac{\pi}{2} A_{m} \sinh (m \pi) & m \geq 1 \\
A_{0} \pi^{2} & m=0\end{cases}
\end{aligned}
$$

Hence

$$
u(x, y)=\frac{\int_{0}^{\pi} g(x) d x}{\pi^{2}} y+\sum_{n=1}^{\infty} \frac{2 \int_{0}^{\pi} g(x) \cos (n x) d x}{\pi \sinh (n \pi)} \cos (n x) \sinh (y)
$$

