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Problem 1. Consider the initial-value problem

Uy +yuy =0 forz,y €R
u(z,0) = ¢(z) forxzeR

Prove the following:
(1) If ¢(x) = = (x € R) then this initial-value problem does not have a solution;
(2) If ¢(x) =1 (x € R) then this initial-value problem has many solutions.

Proof. The characteristic curve for this equation satisfies % = g, hence these
are a family of exponential curves

y=Ce® C€R

hence the initial condition is given on the characteristic curve C' = 0. For the
equation to be solvable ¢ needs to be constant. Hence if ¢(z) = z then this
equation has no solution, but as ¢(x) = 1 we can construct many solutions like
u(z,y) = f(ye™®) where f is a differentiable function satisfying f(0) = 1.
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Problem 2. . Solve the following Cauchy problems of first-order equations:
(1) ug +zuy —u, =u and u(z,y,1) =z +y;

Solution.  We find that the characteristic curve satisfies £ = 1, § = = and
z = —1. Let w(s) = u(x(s),y(s),2(s)) and we have w = w. Hence the curve
starting from the initial hypersurface is

(2(5), 9(5), 2(5)) = (0 + 5,90 + 55° + 05,1~ 5)

and along the characteristic curve we have w = w(0)e®*. We have s = 1 — z and
as we plug this into z(s) and y(s) we have

(0,90 = (242~ Ly — (e + 51 - 2))

Hence we have w(0) = zo +yo = zz+y + ZZT_l Finally we have
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u(z,y,z) =w(0)e' = (zz+y+ : 5 Je' =




(2) wugy + yuy = z and u(z,1) = 2z.
Solution. We find that the characteristic curve satisfies © = v and §y = y. Let
z(s) = u(x(s),y(s)) and we have z = 4 = x. Hence we have

_ mot —z0 ,—
x(s)_$022065+$02206 S
y(s) = yoe®
_ mo+ —zg
Z(S)_’I‘O2ZO€S_I0220€ s
We set s = 0 on initial hypersurface (zg,yo) = (20, 1), hence e® = y and by the
fact that zg = u(xg, 1) = 2z¢ we get from the first equation on z(s):
20 2x

Tro = — =
T2 T 3y +

< =

Pluging this into the equation of z(s) we get
3x r 1 3y?-1
= - - = x.
3y+%y 3y+5y 3P+l

u(z,y) = 2(s)

Problem 3. Classify each of the following second-order equations into elliptic,
hyperbolic, or parabolic equations:

(1) 2ugy — BUgy + 3uy, = 0;

Hyperbolic, since 2 -3 — (3)2 < 0.

(2) Uy — gy + duy, = 0;

Parabolic, since 1 -4 — (%)2 =0.

(3) 2upy — Ugy + 3uyy = 0;
Elliptic, since 2 - 3 — ( ’>0.
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Problem 4. Solve Laplace’s equation on the upper half plane {(z,y) : y > 0}
with the boundary condition u(x,0) =1 (—o0 < z < 00).

Solution. The answer is highly nonunique. For example we can choose a
linear combination of harmonic polynomials which contains no single z™ terms
(e.g. we take 322y — y? instead of x® — 3zy?), so that they take value of zero on
z-axis, then adding 1 will give a solution to this problem.

Problem 5. Let a and b be two positive numbers with a < b. Solve Poisson’s
equation Au =1 in a < r < b with the boundary condition v = 0 on the circles

r =a and 7 = b, where r = \/x2 + y2.
Solution. Rewriting the Laplacian in polar coordinates we have
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Since the boundary condition does not depend on 8, if we define u(r,0) =
u(r,0 + 6p) as a rotation of the original solution, then @ = w = 0 on the
boundary, and A(a — u) = 0. Hence @& = w i.e. u is independent of 6. Hence
u(r,8) = f(r) and f satisfies

Solving the above ODE we have
2
f(r)= 5 + clog(r) +d

where ¢ and d are constants adjusted to the boundary conditions f(a) = f(b) =
0. Finally we have u(r,6) = f(r).

Problem 6.  Solve the one-dimensional eigenvalue problem —u” = Au on
(0, L) and u'(0) = «/(L) = 0 for some given L > 0.

Solution. Multiply each side by u and from integration by part we see

L L L L L
/ —u"u=—v'u —I—/ (u')? = / (u')? = )\/ u?
0 0 0 0 0

hence A > 0 and A = 0 means u is a constant. When A > 0 we try u(z) =
Asin(kz) + B cos(kx) where A, B and k are constants. Plugging this into the
equation we have k2 = )\ and

kAcos(k-0) — kBsin(k-0) = kAcos(kL) — kBsin(kL) =0

Hence kA = 0 and kL = nw for n € Z. Hence the solution is

u(r) = Bcos (?)

with A = n?7r2/L? for n € Z.

Problem 7. Use the method of separation of variables to solve the following
boundary-value problem of Laplace’s equation:

Upy + Uyy = 0 for0<z<mand O<y<m
ug(0,y) =0 and uz(m,y) =0 for0<y<m
u(z,0) =0 and u(z,7) =g(zr) for0<z<m

where g(x) is a given, continuous function on [0, 7].
Solution. Suppose u(z,y) = X(2)Y (y) for some functions X and Y. Using
Laplace equation we have XY + XY = 0, hence
X// Y//
—_—_ = = )\
X Y



for some constant A. Together with the boundary condition for u,, it follows
from Problem 6 that

X(z) = A, cos(nz) n € Z.
This also means A = n? > 0. Hence solving Y we have Y (y) = sinh(ny)

for n > 0, and Y(y) = y for n = 0. To determine these coefficients we use
orthogonality of the set {cos(nz)|n € Z}. Representing u as

u(z,y) = Aoy + Z Ay, cos(nx) sinh(ny)

n=1

We take sum only over ZT because of the parity of cos and sinh. Pluging in
u(x, ) = g(x) we have g(x) = Agm + >, A, sinh(nm) cos(nz). We have

/7T g(z) cos(mz)dx = /7T [Aom + Z Ay, sinh(nm) cos(nz)] cos(ma)da

0 0 ne1

= / Ao cos(mz)dx + Z A, sinh(nm) / cos(nx) cos(mz)dx
0 0

n=1
_ 5 Ay, sinh(m) m>1
Agm? m=20

Hence

— My + i 2 Jg 9(@) cos(nz)da cos(nz) sinh(y).

— 7 sinh(n)



