Math 210C Homework 2 Solutions

Yucheng Tu

April 2018

Problem 1. Consider the initial-value problem

$$\begin{cases} u_x + yu_y = 0 & \text{for } x, y \in \mathbb{R} \\ u(x, 0) = \phi(x) & \text{for } x \in \mathbb{R} \end{cases}$$

Prove the following:

(1) If $\phi(x) = x$ ($x \in \mathbb{R}$) then this initial-value problem does not have a solution; (2) If $\phi(x) = 1$ ($x \in \mathbb{R}$) then this initial-value problem has many solutions.

Proof. The characteristic curve for this equation satisfies $\frac{dy}{dx} = y$, hence these are a family of exponential curves

$$y = Ce^x \qquad C \in \mathbb{R}$$

hence the initial condition is given on the characteristic curve C = 0. For the equation to be solvable ϕ needs to be constant. Hence if $\phi(x) = x$ then this equation has no solution, but as $\phi(x) = 1$ we can construct many solutions like $u(x,y) = f(ye^{-x})$ where f is a differentiable function satisfying f(0) = 1.

Problem 2. Solve the following Cauchy problems of first-order equations: (1) $u_x + xu_y - u_z = u$ and u(x, y, 1) = x + y;

Solution. We find that the characteristic curve satisfies $\dot{x} = 1$, $\dot{y} = x$ and $\dot{z} = -1$. Let w(s) = u(x(s), y(s), z(s)) and we have $\dot{w} = w$. Hence the curve starting from the initial hypersurface is

$$(x(s), y(s), z(s)) = (x_0 + s, y_0 + \frac{1}{2}s^2 + x_0s, 1 - s)$$

and along the characteristic curve we have $w = w(0)e^s$. We have s = 1 - z and as we plug this into x(s) and y(s) we have

$$(x_0, y_0) = \left(x + z - 1, y - \left(x + \frac{z - 1}{2}\right)(1 - z)\right)$$

Hence we have $w(0) = x_0 + y_0 = xz + y + \frac{z^2 - 1}{2}$. Finally we have

$$u(x, y, z) = w(0)e^{1-z} = \left(xz + y + \frac{z^2 - 1}{2}\right)e^{1-z}.$$

(2) $uu_x + yu_y = x$ and u(x, 1) = 2x.

Solution. We find that the characteristic curve satisfies $\dot{x} = u$ and $\dot{y} = y$. Let z(s) = u(x(s), y(s)) and we have $\dot{z} = \dot{u} = x$. Hence we have

$$\begin{cases} x(s) = \frac{x_0 + z_0}{2} e^s + \frac{x_0 - z_0}{2} e^{-s} \\ y(s) = y_0 e^s \\ z(s) = \frac{x_0 + z_0}{2} e^s - \frac{x_0 - z_0}{2} e^{-s} \end{cases}$$

We set s = 0 on initial hypersurface $(x_0, y_0) = (x_0, 1)$, hence $e^s = y$ and by the fact that $z_0 = u(x_0, 1) = 2x_0$ we get from the first equation on x(s):

$$x_0 = \frac{z_0}{2} = \frac{2x}{3y + \frac{1}{y}}$$

Pluging this into the equation of z(s) we get

$$u(x,y) = z(s) = \frac{3x}{3y + \frac{1}{y}}y - \frac{x}{3y + \frac{1}{y}}\frac{1}{y} = \frac{3y^2 - 1}{3y^2 + 1}x.$$

Problem 3. Classify each of the following second-order equations into elliptic, hyperbolic, or parabolic equations:

(1) $2u_{xx} - 6u_{xy} + 3u_{yy} = 0;$ Hyperbolic, since $2 \cdot 3 - \left(\frac{6}{2}\right)^2 < 0.$

(2) $u_{xx} - 4u_{xy} + 4u_{yy} = 0;$ Parabolic, since $1 \cdot 4 - \left(\frac{4}{2}\right)^2 = 0.$

(3) $2u_{xx} - u_{xy} + 3u_{yy} = 0;$ Elliptic, since $2 \cdot 3 - \left(\frac{1}{2}\right)^2 > 0.$

Problem 4. Solve Laplace's equation on the upper half plane $\{(x, y) : y > 0\}$ with the boundary condition u(x, 0) = 1 $(-\infty < x < \infty)$.

Solution. The answer is highly nonunique. For example we can choose a linear combination of harmonic polynomials which contains no single x^n terms (e.g. we take $3x^2y - y^3$ instead of $x^3 - 3xy^2$), so that they take value of zero on x-axis, then adding 1 will give a solution to this problem.

Problem 5. Let *a* and *b* be two positive numbers with a < b. Solve Poisson's equation $\Delta u = 1$ in a < r < b with the boundary condition u = 0 on the circles r = a and r = b, where $r = \sqrt{x^2 + y^2}$.

Solution. Rewriting the Laplacian in polar coordinates we have

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial u}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 u}{\partial \theta^2} = 1$$

Since the boundary condition does not depend on θ , if we define $\tilde{u}(r,\theta) = u(r,\theta + \theta_0)$ as a rotation of the original solution, then $\tilde{u} = u = 0$ on the boundary, and $\Delta(\tilde{u} - u) = 0$. Hence $\tilde{u} = u$ i.e. u is independent of θ . Hence $u(r,\theta) = f(r)$ and f satisfies

$$\begin{cases} \frac{1}{r} \frac{d}{dr} \left(r \frac{df}{dr} \right) = 1\\ f(a) = f(b) = 0 \end{cases}$$

Solving the above ODE we have

$$f(r) = \frac{r^2}{2} + c\log(r) + d$$

where c and d are constants adjusted to the boundary conditions f(a) = f(b) = 0. Finally we have $u(r, \theta) = f(r)$.

Problem 6. Solve the one-dimensional eigenvalue problem $-u'' = \lambda u$ on (0, L) and u'(0) = u'(L) = 0 for some given L > 0.

Solution. Multiply each side by u and from integration by part we see

$$\int_0^L -u''u = -u'u\Big|_0^L + \int_0^L (u')^2 = \int_0^L (u')^2 = \lambda \int_0^L u^2$$

hence $\lambda \geq 0$ and $\lambda = 0$ means u is a constant. When $\lambda > 0$ we try $u(x) = A\sin(kx) + B\cos(kx)$ where A, B and k are constants. Plugging this into the equation we have $k^2 = \lambda$ and

$$kA\cos(k\cdot 0) - kB\sin(k\cdot 0) = kA\cos(kL) - kB\sin(kL) = 0$$

Hence kA = 0 and $kL = n\pi$ for $n \in \mathbb{Z}$. Hence the solution is

$$u(x) = B\cos\left(\frac{n\pi x}{L}\right)$$

with $\lambda = n^2 \pi^2 / L^2$ for $n \in \mathbb{Z}$.

.

Problem 7. Use the method of separation of variables to solve the following boundary-value problem of Laplace's equation:

$$\begin{cases} u_{xx} + u_{yy} = 0 & \text{for } 0 < x < \pi \text{ and } 0 < y < \pi \\ u_x(0, y) = 0 \text{ and } u_x(\pi, y) = 0 & \text{for } 0 < y < \pi \\ u(x, 0) = 0 \text{ and } u(x, \pi) = g(x) & \text{for } 0 < x < \pi \end{cases}$$

where g(x) is a given, continuous function on $[0, \pi]$.

Solution. Suppose u(x, y) = X(x)Y(y) for some functions X and Y. Using Laplace equation we have X''Y + XY'' = 0, hence

$$-\frac{X''}{X} = \frac{Y''}{Y} = \lambda$$

for some constant λ . Together with the boundary condition for u_x , it follows from **Problem 6** that

$$X(x) = A_n \cos(nx) \qquad n \in \mathbb{Z}.$$

This also means $\lambda = n^2 \ge 0$. Hence solving Y we have $Y(y) = \sinh(ny)$ for n > 0, and Y(y) = y for n = 0. To determine these coefficients we use orthogonality of the set $\{\cos(nx) | n \in \mathbb{Z}\}$. Representing u as

$$u(x,y) = A_0 y + \sum_{n=1}^{\infty} A_n \cos(nx) \sinh(ny)$$

We take sum only over \mathbb{Z}^+ because of the parity of cos and sinh. Pluging in $u(x,\pi) = g(x)$ we have $g(x) = A_0\pi + \sum_n A_n \sinh(n\pi) \cos(nx)$. We have

$$\begin{split} \int_{0}^{\pi} g(x) \cos(mx) dx &= \int_{0}^{\pi} \left[A_{0}\pi + \sum_{n=1}^{\infty} A_{n} \sinh(n\pi) \cos(nx) \right] \cos(mx) dx \\ &= \int_{0}^{\pi} A_{0}\pi \cos(mx) dx + \sum_{n=1}^{\infty} A_{n} \sinh(n\pi) \int_{0}^{\pi} \cos(nx) \cos(mx) dx \\ &= \begin{cases} \frac{\pi}{2} A_{m} \sinh(m\pi) & m \ge 1 \\ A_{0}\pi^{2} & m = 0 \end{cases} \end{split}$$

Hence

$$u(x,y) = \frac{\int_0^{\pi} g(x)dx}{\pi^2}y + \sum_{n=1}^{\infty} \frac{2\int_0^{\pi} g(x)\cos(nx)dx}{\pi\sinh(n\pi)}\cos(nx)\sinh(y).$$