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Problem 1. For each integer n ≥ 1, define un, vn : R2 → R2 in the polar
coordinates by un(r, θ) = rn cos(nθ) and vn(r, θ) = rn sin(nθ). Verify that both
un and vn are harmonic functions in R2.

Solutions. The Laplacian in polar coordinates is

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
.

Hence

∆un =
∂2rn

∂r2
cos(nθ) +

1

r

∂rn

∂r
cos(nθ) +

rn

r2

∂2 cos(nθ)

∂θ2

=
[
n(n− 1)rn−2 + nrn−2 − n2rn−2

]
cos(nθ)

= 0

Similar computation works for vn.

Problem 2. Let u ∈ C2(R2). Let ξ = ξ(x, y) and η = η(x, y) be smooth func-
tions that define a bijective map from R2 to R2 with a smooth inverse x = x(ξ, η)
and y = y(ξ, η). Define v(ξ, η) = u(x, y) with x = x(ξ, η) and y = y(ξ, η) for for
any (ξ, η) ∈ R2.

(1) Verify that

∆u(x, y) = vξξ|∇(x,y)ξ|2+vηη|∇(x,y)η|2+2vξη∇(x,y)ξ·∇(x,y)η+vξ∆(x,y)η+vη∆(x,y)η

Proof. Using chain rule we can show this by direct compututation.

(2) Use Part (1) to show that the Laplacian in the polar coordinates (r, θ) is
given by

∆(x,y)u(r, θ) = urr +
1

r
ur +

1

r2
uθθ.

Proof. We have r =
√
x2 + y2 and cos θ = x/r, hence plugging these into the

equation in (1) we get the result.
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Problem 3. Let n ≥ 2 be an integer and r = |x| =
√
x2

1 + · · ·+ x2
n with

x = (x1, · · · , xn) ∈ Rn. Let u ∈ C2(R).

(1) Express ∆u in terms of u′(r) and u′′(r).

Proof. Using a similar computation as in Problem 2., we have that

∆u = urr +
n− 1

r
ur +

1

r2
∆Sn−1u.

Hence in case u = u(r), we have

u = urr +
n− 1

r
ur.

(2) Solve ∆u = 0 by finding the general solution to the ordinary differential
equation for u = u(r).
Solution. The ODE is that

urr +
n− 1

r
ur = 0.

To solve this we multiply rn−1 to both sides, hence (rn−1ur)r = 0 which implies

u(r) =

{
C log(r) + C ′ when n = 2

Cr2−n + C ′ when n ≥ 3

Problem 4. Solve Laplace’s equation ∆u = 0 on the disk r < 1 with the
boundary condition u = 1 + 3 sin θ − 4 cos(5θ) at r = 1.

Solution. By Problem 1, we simply write down

u(r, θ) = 1 + 3r sin(θ)− 4r5 cos(5θ).

Since each term is harmonic, u is harmonic. By the uniqueness of solution we
see u solves Laplace’s equation uniquely in the unit disk.

Problem 5. (1) Show that K(x) = −|x|/2 satisfies −K ′′ = δ in R, where δ is
the one-dimensional Dirac delta function at 0. This means that∫ ∞

−∞
K(x)φ′′(x)dx = −φ(0)

for any continuously differentiable and compactly supported function φ = φ(x).
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Proof. Using integration by parts we get∫ ∞
−∞

K(x)φ′′(x)dx = Kφ′
∣∣∣∞
−∞
−
(∫ 0

−∞
+

∫ ∞
0

)
K ′(x)φ′(x)dx

= 0−
∫ 0

−∞

1

2
φ′(x)dx+

∫ ∞
0

1

2
φ′(x)dx

= −φ(0)

(2) Construct the Green’s function G = G(x, y) on a finite interval (a, b) as

G(x, y) = K(x− y) + gx(y) ∀y ∈ (a, b)

where gx for each x ∈ (a, b) is a harmonic function such that G(x, a) = G(x, b) =
0.

Solution. A harmonic function on an interval is a linear function in y, hence
gx(y) = c1(x) + c2(x)y, therefore we solve c1(x) and c2(x) under boundary
condition as follows: {

K(x− a) + c1(x) + c2(x)a = 0

K(x− b) + c1(x) + c2(x)b = 0

Hence {
c1(x) = K(x−a)b−K(x−b)a

a−b
c2(x) = K(x−a)−K(x−b)

b−a

Hence the answer follows.

Problem 6. (1) Let v = v(x, y) be a harmonic function. Prove that u(x, y) =
v(x2 − y2, 2xy) is also a harmonic function.

Proof. Using complex analysis, let i =
√
−1, z = x + iy and z̄ = x − iy then

∂z = 1
2 (∂x − i∂y) and ∂z̄ = 1

2 (∂x + i∂y), hence ∆v(z, z̄) = 4∂z̄∂zv(z, z̄). We also
have z2 = x2 − y2 + 2ixy, hence u(z, z̄) = v(z2, z̄) and

∆u(z, z̄) = ∆v(z2, z̄) = 4∂z̄∂zv(z2, z̄) = 2z∆v
∣∣∣
(z2,z̄)

= 0

Since ∂z̄z = 0 and the chain rule.

(2) Prove that the mapping (x, y) → (x2 − y2, 2xy) maps the first quadrant
x > 0 and y > 0 to the upper half plan y > 0.

Proof. Also from the discussion above, since z → z2 is a bijection from the first
quadrant to upper half plane, the result follows.
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(3) Use the mapping in Part (2) and the Green’s function for the upper half
plane to construct the Green’s function for the first quadrant.

Solution. Recalling that the Green’s function for the upper half plane is

G(z1, z2) = Φ(z2 − z1)− Φ(z2 − z̄1) =
1

2π
(ln |z2 − z1| − ln |z2 − z̄1|)

where zj = xj + iyj = (xj , yj), j = 1, 2. Hence gz1(z2) = G(z1, z2) is harmonic
in z2 and vanishes when z2 is on x-axis. By (1) and (2) we see gz1(z2

2) is
also harmonic in z2 and vanishes on the boundary of first quadrant, hence the
Green’s function is

Ĝ(z1, z2) = Φ(z2
2 − z1)− Φ(z2

2 − z̄1) =
1

2π
(ln |z2

2 − z1| − ln |z2
2 − z̄1|).

Using coordinates (x, y) we have

Ĝ((x1, y1), (x2, y2)) =
1

4π
ln

(x2
2 − y2

2 − x1)2 + (2x2y2 − y1)2

(x2
2 − y2

2 − x1)2 + (2x2y2 + y1)2

(4) Solve Laplace’s equation ∆u = 0 in the region x > 0 and y > 0 with the
boundary conditions u(0, y) = g(y) for y > 0 and u(x, 0) = h(x) for x > 0,
where g and h are given continuous functions.

Solution. Use Green’s Formula we have

u(x, y) =

∫ ∞
0

h(ξ)
∂Ĝ

∂η

∣∣∣
((x,y),(ξ,0))

dξ +

∫ ∞
0

g(η)
∂Ĝ

∂ξ

∣∣∣
((x,y),(0,η))

dη

since the outward normal on the boundary of the first quadrant are −∂ξ and
−∂η respectively.
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