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Problem 1. Let α > 0 and define K(r) = (1/r)e−αr (r > 0). Verify that

−∆K(|x|) + α2K(|x|) = 0 ∀x ∈ R3, x 6= 0.

Optional: Prove that K(|x|)/(4π) is the fundamental solution to −∆ +α in R3,
i.e.,

−∆K + α2K = 4πδ in R3 and K(∞) = 0.

Proof. Using the Laplacian in spherical form, i.e.

∆K =
∂2K

∂r2
+

2

r

∂K

∂r
+

1

r2
∆S2K

where ∆S2 is the Laplacian operator on unit sphere. Since K is a radial func-
tion, the last term drops. It is then direct to check that K satisfies the equation.

To see K is the fundamental solution, take any u : R3 → R as a compactly
supported test function. Then if we take Bε(0) to be a small ball of radius ε
around the origin, since K satisfies the equation above where x 6= 0, we have∫

R3

(−∆K(x) + α2K(x))u(x)dx

=

∫
Bε(0)

(−∆K(x) + α2K(x))u(x)dx

=

∫
∂Bε(0)

−∂K
∂n

u(x)dS2(x) +

∫
Bε(0)

[∇K · ∇u+ α2K(x)u(x)]dx

=

∫
∂Bε(0)

1 + αε

ε2
e−αεu(x)dS2(x) +

∫
Bε(0)

[∇K · ∇u+ α2K(x)u(x)]dx

Now we take ε→ 0, and we see that∫
∂Bε(0)

1 + αε

ε2
e−αεu(x)dS2(x)− 4πu(0)

=

∫
∂Bε(0)

(1 + αε)e−αεu(x)− u(0)

ε2
dS2(x)

=

∫
∂B1(0)

[
(1 + αε)e−αεu(εx)− u(0)

]
dS2(x) −→ 0
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since (1 + αε)e−αεu(εx)→ u(0) as ε→ 0. For the second term we have

|∇K| = O(
1

|x|2
) and |K| = O(

1

|x|
)

also since |∇u| and u is bounded near 0, hence∣∣∣∣ ∫
Bε(0)

[∇K · ∇u+ α2K(x)u(x)]dx

∣∣∣∣ ≤ ∫
Bε(0)

( C1

|x|2
+
C2

|x|

)
dx ≤ Cε→ 0

Hence the original integral equals 4πu(0), and also K(∞) = 0. Hence K is the
fundamental solution to −∆ + α.

Problem 2. Let α > 0. Let f : Ω → R and g : ∂Ω → R be two given func-
tions. Prove the uniqueness of solution to the Robin boundary-value problem
of Poisson’s equation in a bounded and smooth domain Ω:{

−∆u = f in Ω.

∂nu+ αu = g on ∂Ω.

Proof. Let u1 and u2 be two solutions to the same equation as above, let u =
u1 − u2, then by linearity u satisfies the equation with f = 0 and g = 0. We
have

0 =

∫
Ω

u∆u =

∫
∂Ω

u∂nu−
∫

Ω

|∇u|2 = −α
∫
∂Ω

u2 −
∫

Ω

|∇u|2

But the right hand side is always nonnegative, hence u = 0 on ∂Ω and ∇u = 0
in Ω, therefore u = 0 in Ω, u1 is the same solution as u2.

Problem 3. Let κ be a positive number. Let f : Ω → R and g : ∂Ω → R
be two given functions. Prove the uniqueness of solution to the boundary-value
problem: {

−∆u+ κ2u = f in Ω.

u = g on ∂Ω.

or {
−∆u+ κ2u = f in Ω.

∂nu = g on ∂Ω.

Proof. Like Problem 2 we show that the only solution to the above equations
with f = 0 and g = 0 is the trivial solution. We have

0 =

∫
Ω

u∆u =

∫
∂Ω

u∂nu−
∫

Ω

|∇u|2 = −
∫

Ω

|∇u|2

because either u = 0 or ∂nu = 0 on ∂Ω in these two equations. Hence u is
constant 0.
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Problem 4. Let Ω be a bounded and smooth domain in Rd for some d ≥ 2.
Calculate the Euler–Lagrange equation for the functional

E[u] =

∫
Ω

1

2
[|∆u|2 − ln(1 + |∇u|2)]dx

Solution. Take a smooth function v which is compactly supported in Ω. Then

d

dt
E[u+ tv]

∣∣∣
t=0

=
d

dt

∫
Ω

1

2
[|∆(u+ tv)|2 − ln(1 + |∇(u+ tv)|2)]dx

∣∣∣
t=0

=

∫
Ω

1

2
[
d

dt
|∆(u+ tv)|2 − d

dt
ln(1 + |∇(u+ tv)|2)]dx

∣∣∣
t=0

we have
d

dt
|∆(u+ tv)|2

∣∣∣
t=0

= 2∆v(∆u+ t∆v)
∣∣∣
t=0

= 2∆v∆u

and

d

dt
ln(1 + |∇(u+ tv)|2)

∣∣∣
t=0

=
2∇v · ∇(u+ tv)

1 + |∇(u+ tv)|2
∣∣∣
t=0

=
2∇v · ∇u
1 + |∇u|2

Hence

d

dt
E[u+ tv]

∣∣∣
t=0

=

∫
Ω

[
∆v∆u− ∇v · ∇u

1 + |∇u|2
]
dx

=

∫
Ω

[
∆2u+∇ ·

( ∇u
1 + |∇u|2

)]
vdx

Hence the Euler-Lagrange equation is

∆2u+∇ ·
( ∇u

1 + |∇u|2
)

= 0.

Problem 5. Is the statement of the Mean Value Theorem for a harmonic func-
tion still true if the sphere is replaced by a cube or a disk is replaced by a square?

Solution. NO. Mean value property relies on the radial symmetry of the domain,
which is not true for cubes and squares. To find a counterexample for squares,
use the degree 4 polynomial u(x, y) = x4−6x2y2 +y4 on D = [0, 1]× [0, 1]. Also
see http://www.jstor.org/stable/2974823, Theorem 2 for a characterization of
the region which makes every harmonic satisfy the mean value property.
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