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Problem 1. Let a > 0 and define K (r) = (1/r)e™*" (r > 0). Verify that
~AK(|z]) + *K(|z|) = 0 Vo € R3 x #0.

Optional: Prove that K (|z|)/(47) is the fundamental solution to —A + « in R3,
ie.,

~AK +o’K =476 inR® and K(c0)=0.
Proof. Using the Laplacian in spherical form, i.e.

2K 20K 1
2O L ApK
or? +7"8r +r2 5

where Agz is the Laplacian operator on unit sphere. Since K is a radial func-
tion, the last term drops. It is then direct to check that K satisfies the equation.

AK =

To see K is the fundamental solution, take any u : R?> — R as a compactly
supported test function. Then if we take B.(0) to be a small ball of radius e
around the origin, since K satisfies the equation above where x # 0, we have
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Now we take ¢ — 0, and we see that
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since (1 + ae)e”*“u(ex) — u(0) as e — 0. For the second term we have
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also since |Vu| and u is bounded near 0, hence
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Hence the original integral equals 47 (0), and also K (co) = 0. Hence K is the
fundamental solution to —A + a.
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Problem 2. Let « > 0. Let f: Q2 — R and g : 92 — R be two given func-
tions. Prove the uniqueness of solution to the Robin boundary-value problem
of Poisson’s equation in a bounded and smooth domain €:

—Au=f in Q.
Opt + au =g on 0f.

Proof. Let u; and us be two solutions to the same equation as above, let u =
u1 — uo, then by linearity w satisfies the equation with f = 0 and ¢ = 0. We

have
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But the right hand side is always nonnegative, hence © = 0 on 92 and Vu =0
in Q, therefore u = 0 in €, u; is the same solution as us.
O

Problem 3. Let x be a positive number. Let f : @ — R and g : 02 — R
be two given functions. Prove the uniqueness of solution to the boundary-value
problem:

—Au+r*u=f in Q.
{u =g on 0f.
or
—Au+riu=f in Q.
{(’%u =g on 0N.

Proof. Like Problem 2 we show that the only solution to the above equations
with f =0 and g = 0 is the trivial solution. We have
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because either u = 0 or d,u = 0 on N in these two equations. Hence u is

constant 0.
]



Problem 4. Let  be a bounded and smooth domain in R? for some d > 2.
Calculate the Euler—Lagrange equation for the functional

E[u]:/Q%[|Au|2—ln(1+|Vu|2)]da:

Solution. Take a smooth function v which is compactly supported in 2. Then
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Problem 5. Is the statement of the Mean Value Theorem for a harmonic func-
tion still true if the sphere is replaced by a cube or a disk is replaced by a square?

Solution. NO. Mean value property relies on the radial symmetry of the domain,
which is not true for cubes and squares. To find a counterexample for squares,
use the degree 4 polynomial u(z,y) = z* —622y? +y* on D = [0,1] x [0, 1]. Also
see http://www.jstor.org/stable/2974823, Theorem 2 for a characterization of
the region which makes every harmonic satisfy the mean value property.



