Math 210C Homework 4 Solutions

Yucheng Tu

May 2018

Problem 1. Let $\alpha>0$ and define $K(r)=(1 / r) e^{-\alpha r}(r>0)$. Verify that

$$
-\Delta K(|x|)+\alpha^{2} K(|x|)=0 \quad \forall x \in \mathbb{R}^{3}, x \neq 0
$$

Optional: Prove that $K(|x|) /(4 \pi)$ is the fundamental solution to $-\Delta+\alpha$ in \mathbb{R}^{3}, i.e.,

$$
-\Delta K+\alpha^{2} K=4 \pi \delta \quad \text { in } \mathbb{R}^{3} \quad \text { and } \quad K(\infty)=0
$$

Proof. Using the Laplacian in spherical form, i.e.

$$
\Delta K=\frac{\partial^{2} K}{\partial r^{2}}+\frac{2}{r} \frac{\partial K}{\partial r}+\frac{1}{r^{2}} \Delta_{\mathbb{S}^{2}} K
$$

where $\Delta_{\mathbb{S}^{2}}$ is the Laplacian operator on unit sphere. Since K is a radial function, the last term drops. It is then direct to check that K satisfies the equation.

To see K is the fundamental solution, take any $u: \mathbb{R}^{3} \rightarrow \mathbb{R}$ as a compactly supported test function. Then if we take $B_{\epsilon}(0)$ to be a small ball of radius ϵ around the origin, since K satisfies the equation above where $x \neq 0$, we have

$$
\begin{aligned}
& \int_{\mathbb{R}^{3}}\left(-\Delta K(x)+\alpha^{2} K(x)\right) u(x) d x \\
= & \int_{B_{\epsilon}(0)}\left(-\Delta K(x)+\alpha^{2} K(x)\right) u(x) d x \\
= & \int_{\partial B_{\epsilon}(0)}-\frac{\partial K}{\partial n} u(x) d_{\mathbb{S}^{2}}(x)+\int_{B_{\epsilon}(0)}\left[\nabla K \cdot \nabla u+\alpha^{2} K(x) u(x)\right] d x \\
= & \int_{\partial B_{\epsilon}(0)} \frac{1+\alpha \epsilon}{\epsilon^{2}} e^{-\alpha \epsilon} u(x) d_{\mathbb{S}^{2}}(x)+\int_{B_{\epsilon}(0)}\left[\nabla K \cdot \nabla u+\alpha^{2} K(x) u(x)\right] d x
\end{aligned}
$$

Now we take $\epsilon \rightarrow 0$, and we see that

$$
\begin{aligned}
& \int_{\partial B_{\epsilon}(0)} \frac{1+\alpha \epsilon}{\epsilon^{2}} e^{-\alpha \epsilon} u(x) d_{\mathbb{S}^{2}}(x)-4 \pi u(0) \\
= & \int_{\partial B_{\epsilon}(0)} \frac{(1+\alpha \epsilon) e^{-\alpha \epsilon} u(x)-u(0)}{\epsilon^{2}} d_{\mathbb{S}^{2}}(x) \\
= & \int_{\partial B_{1}(0)}\left[(1+\alpha \epsilon) e^{-\alpha \epsilon} u(\epsilon x)-u(0)\right] d_{\mathbb{S}^{2}}(x) \longrightarrow 0
\end{aligned}
$$

since $(1+\alpha \epsilon) e^{-\alpha \epsilon} u(\epsilon x) \rightarrow u(0)$ as $\epsilon \rightarrow 0$. For the second term we have

$$
|\nabla K|=O\left(\frac{1}{|x|^{2}}\right) \quad \text { and } \quad|K|=O\left(\frac{1}{|x|}\right)
$$

also since $|\nabla u|$ and u is bounded near 0 , hence

$$
\left|\int_{B_{\epsilon}(0)}\left[\nabla K \cdot \nabla u+\alpha^{2} K(x) u(x)\right] d x\right| \leq \int_{B_{\epsilon}(0)}\left(\frac{C_{1}}{|x|^{2}}+\frac{C_{2}}{|x|}\right) d x \leq C \epsilon \rightarrow 0
$$

Hence the original integral equals $4 \pi u(0)$, and also $K(\infty)=0$. Hence K is the fundamental solution to $-\Delta+\alpha$.

Problem 2. Let $\alpha>0$. Let $f: \Omega \rightarrow \mathbb{R}$ and $g: \partial \Omega \rightarrow \mathbb{R}$ be two given functions. Prove the uniqueness of solution to the Robin boundary-value problem of Poisson's equation in a bounded and smooth domain Ω :

$$
\begin{cases}-\Delta u=f & \text { in } \Omega \\ \partial_{n} u+\alpha u=g & \text { on } \partial \Omega\end{cases}
$$

Proof. Let u_{1} and u_{2} be two solutions to the same equation as above, let $u=$ $u_{1}-u_{2}$, then by linearity u satisfies the equation with $f=0$ and $g=0$. We have

$$
0=\int_{\Omega} u \Delta u=\int_{\partial \Omega} u \partial_{n} u-\int_{\Omega}|\nabla u|^{2}=-\alpha \int_{\partial \Omega} u^{2}-\int_{\Omega}|\nabla u|^{2}
$$

But the right hand side is always nonnegative, hence $u=0$ on $\partial \Omega$ and $\nabla u=0$ in Ω, therefore $u=0$ in Ω, u_{1} is the same solution as u_{2}.

Problem 3. Let κ be a positive number. Let $f: \Omega \rightarrow \mathbb{R}$ and $g: \partial \Omega \rightarrow \mathbb{R}$ be two given functions. Prove the uniqueness of solution to the boundary-value problem:

$$
\begin{cases}-\Delta u+\kappa^{2} u=f & \text { in } \Omega \\ u=g & \text { on } \partial \Omega\end{cases}
$$

or

$$
\begin{cases}-\Delta u+\kappa^{2} u=f & \text { in } \Omega \\ \partial_{n} u=g & \text { on } \partial \Omega\end{cases}
$$

Proof. Like Problem 2 we show that the only solution to the above equations with $f=0$ and $g=0$ is the trivial solution. We have

$$
0=\int_{\Omega} u \Delta u=\int_{\partial \Omega} u \partial_{n} u-\int_{\Omega}|\nabla u|^{2}=-\int_{\Omega}|\nabla u|^{2}
$$

because either $u=0$ or $\partial_{n} u=0$ on $\partial \Omega$ in these two equations. Hence u is constant 0 .

Problem 4. Let Ω be a bounded and smooth domain in \mathbb{R}^{d} for some $d \geq 2$. Calculate the Euler-Lagrange equation for the functional

$$
E[u]=\int_{\Omega} \frac{1}{2}\left[|\Delta u|^{2}-\ln \left(1+|\nabla u|^{2}\right)\right] d x
$$

Solution. Take a smooth function v which is compactly supported in Ω. Then

$$
\begin{aligned}
\left.\frac{d}{d t} E[u+t v]\right|_{t=0} & =\left.\frac{d}{d t} \int_{\Omega} \frac{1}{2}\left[|\Delta(u+t v)|^{2}-\ln \left(1+|\nabla(u+t v)|^{2}\right)\right] d x\right|_{t=0} \\
& =\left.\int_{\Omega} \frac{1}{2}\left[\frac{d}{d t}|\Delta(u+t v)|^{2}-\frac{d}{d t} \ln \left(1+|\nabla(u+t v)|^{2}\right)\right] d x\right|_{t=0}
\end{aligned}
$$

we have

$$
\left.\frac{d}{d t}|\Delta(u+t v)|^{2}\right|_{t=0}=\left.2 \Delta v(\Delta u+t \Delta v)\right|_{t=0}=2 \Delta v \Delta u
$$

and

$$
\left.\frac{d}{d t} \ln \left(1+|\nabla(u+t v)|^{2}\right)\right|_{t=0}=\left.\frac{2 \nabla v \cdot \nabla(u+t v)}{1+|\nabla(u+t v)|^{2}}\right|_{t=0}=\frac{2 \nabla v \cdot \nabla u}{1+|\nabla u|^{2}}
$$

Hence

$$
\begin{aligned}
\left.\frac{d}{d t} E[u+t v]\right|_{t=0} & =\int_{\Omega}\left[\Delta v \Delta u-\frac{\nabla v \cdot \nabla u}{1+|\nabla u|^{2}}\right] d x \\
& =\int_{\Omega}\left[\Delta^{2} u+\nabla \cdot\left(\frac{\nabla u}{1+|\nabla u|^{2}}\right)\right] v d x
\end{aligned}
$$

Hence the Euler-Lagrange equation is

$$
\Delta^{2} u+\nabla \cdot\left(\frac{\nabla u}{1+|\nabla u|^{2}}\right)=0
$$

Problem 5. Is the statement of the Mean Value Theorem for a harmonic function still true if the sphere is replaced by a cube or a disk is replaced by a square?

Solution. NO. Mean value property relies on the radial symmetry of the domain, which is not true for cubes and squares. To find a counterexample for squares, use the degree 4 polynomial $u(x, y)=x^{4}-6 x^{2} y^{2}+y^{4}$ on $D=[0,1] \times[0,1]$. Also see http://www.jstor.org/stable/2974823, Theorem 2 for a characterization of the region which makes every harmonic satisfy the mean value property.

