Math 210C Homework 5 Solutions

Yucheng Tu

May 2018

Problem 1. Let $f \in C([0,1])$ be given. Use the method of separation of variables to find the series expansion of the solution $u=u(x, t)$ to the following initial-boundary-value problem:

$$
\begin{cases}u_{t}=u_{x x}-u & \text { for } 0<x<1, t>0 \\ u(0, t)=u(1, t)=0 & \text { for } t>0 \\ u(x, 0)=f(x) & \text { for } 0<x<1\end{cases}
$$

Solution. Suppose u has the following expansion:

$$
u(x, t)=\sum_{n=0}^{\infty} X_{n}(x) T_{n}(t)
$$

By the equation we have

$$
X_{n}(x) T_{n}^{\prime}(t)=X_{n}^{\prime \prime}(x) T_{n}(t)-X_{n}(x) T_{n}(t)
$$

i.e.

$$
\frac{T_{n}^{\prime}(t)}{T_{n}(t)}=\frac{X_{n}^{\prime \prime}(x)}{X_{n}(x)}-1=\lambda_{n}
$$

where λ_{n} is a constant depending only on n. Combining the boundary condition $u(0, t)=u(1, t)=0$ with $X_{n}^{\prime \prime}(x)=\left(\lambda_{n}+1\right) X_{n}(x)$ we have that $\lambda_{n}+1=-n^{2} \pi^{2}$, and

$$
X_{n}(x)=A_{n} \sin (n \pi x)
$$

Solving $T_{n}^{\prime}(t)=\left(-n^{2} \pi^{2}-1\right) T_{n}(t)$ we have $T_{n}(t)=B_{n} e^{-\left(n^{2} \pi^{2}+1\right) t}$, hence in total

$$
\begin{equation*}
u(x, t)=\sum_{n=0}^{\infty} C_{n} \sin (n \pi x) e^{-\left(\pi^{2} n^{2}+1\right) t} \tag{1}
\end{equation*}
$$

where $C_{n}=A_{n} B_{n}$. Pluging in $t=0$ and using $u(x, 0)=f(x)$ we have that, by Fourier transform

$$
\begin{equation*}
C_{n}=2 \int_{0}^{1} f(x) \sin (\pi n x) d x \tag{2}
\end{equation*}
$$

since

$$
2 \int_{0}^{1} \sin (n \pi x) \sin (m \pi x) d x=\delta_{m n}
$$

Combining (1) and (2) gives the answer.

Problem 2. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded and smooth domain. Let $u \in C^{2}(\Omega)$ be a nonzero (real-valued) function and let $\lambda \in \mathbb{R}$. Suppose $-\Delta u=\lambda u$ in Ω and $u=0$ on $\partial \Omega$. Show that

$$
\lambda=\left(\int_{\Omega}|\nabla u|^{2} d x\right)\left(\int_{\Omega} u^{2} d x\right)^{-1}>0 .
$$

Proof. By integration by parts

$$
\int_{\Omega}-\lambda u^{2} d x=\int_{\Omega} u \Delta u d x=\int_{\partial \Omega} u \frac{\partial u}{\partial n} d x-\int_{\Omega}|\nabla u|^{2} d x=-\int_{\Omega}|\nabla u|^{2} d x
$$

Since u is nonzero, the result follows.

Problem 3. Find the Fourier transform for each of the following functions:
(1) $f(x)=(1 / 2) \chi_{[-1,1]}$, where χ_{A} denotes the characteristic function of A (i.e., $\chi_{A}=1$ if $x \in A$ and $\chi_{A}=0$ if $x \notin A$);

Solution. We have

$$
\begin{aligned}
\hat{f}(\xi) & =\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \frac{1}{2} \chi_{[-1,1]}(x) e^{-i \xi x} d x \\
& =\frac{1}{2 \sqrt{2 \pi}} \int_{-1}^{1} e^{-i \xi x} d x \\
& =\frac{1}{\sqrt{2 \pi}} \frac{e^{i \xi}-e^{-i \xi}}{2 i \xi} \\
& =\frac{\sin \xi}{\xi \sqrt{2 \pi}}
\end{aligned}
$$

(2) (Optional) $f(x)=1 /\left(1+x^{2}\right)(x \in \mathbb{R})$.

Solution. We have

$$
\hat{f}(\xi)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \frac{1}{1+x^{2}} e^{-i \xi x} d x
$$

consider $g(z)=e^{-i \xi z} /\left(1+z^{2}\right)$. When $\xi<0$, we consider $\Gamma_{R}^{+}=[-R, R] \cup\{z \in$ $\mathbb{C}:|z|=R$ and $\operatorname{Im}(z)>0\}$, when $\xi>0$ we consider $\Gamma_{R}^{-}=[-R, R] \cup\{z \in \mathbb{C}$: $|z|=R$ and $\operatorname{Im}(z)<0\}$. We also have

$$
\operatorname{Res}(g(z) ; z=i)=\frac{e^{\xi}}{2 i} \quad \operatorname{Res}(g(z) ; z=-i)=\frac{e^{-\xi}}{-2 i}
$$

For the case $\xi<0$, we have

$$
|g(z)|=\left|\frac{1}{1+z^{2}} e^{-i \xi(x+i y)}\right|=\left|\frac{1}{1+z^{2}} e^{\xi y}\right| \leq \frac{C}{1+R^{2}} \quad \text { for } z \in C_{R}^{+}
$$

likewise for $\xi>0$, we have

$$
|g(z)|=\left|\frac{1}{1+z^{2}} e^{-i \xi(x+i y)}\right|=\left|\frac{1}{1+z^{2}} e^{\xi y}\right| \leq \frac{C}{1+R^{2}} \quad \text { for } z \in C_{R}^{-}
$$

From the above we deduce that

$$
\int_{C_{R}^{+}} g(z) d z \longrightarrow 0, \quad \int_{C_{R}^{-}} g(z) d z \longrightarrow 0 \text { as } R \rightarrow \infty
$$

Hence
$\sqrt{2 \pi} \hat{f}(\xi)= \begin{cases}\lim _{R \rightarrow \infty} \int_{\Gamma_{R}^{+}} g(z) d z=2 \pi i \cdot \operatorname{Res}(g(z) ; z=i)=\pi e^{\xi} & (\xi<0) \\ \lim _{R \rightarrow \infty}-\int_{\Gamma_{R}^{-}} g(z) d z=-2 \pi i \cdot \operatorname{Res}(g(z) ; z=-i)=\pi e^{-\xi} & (\xi>0)\end{cases}$
Combined with the case $\xi=0$, where $\sqrt{2 \pi} \hat{f}(0)=\pi$ by direct integration, we have

$$
\hat{f}(\xi)=\sqrt{\frac{\pi}{2}} e^{-|\xi|}
$$

Problem 4. (1) The Gaussian kernel (or heat kernel) in one space dimension is defined to be

$$
K(x, t)=\frac{1}{\sqrt{4 \pi D t}} e^{-\frac{x^{2}}{4 D t}} \quad(x \in \mathbb{R}, t>0)
$$

where $D>0$ is a constant. Verify that $K_{t}=D K_{x x}$ for all $x \in \mathbb{R}$ and $t>0$.
Solution. Direct computation.
(2) Define now $u(x, t)=K_{n}(x, t)=\prod_{i=1}^{n} K\left(x_{i}, t\right)$ for $x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}$ and $t>0$. Verify that $u_{t}=D \Delta u$ for all $x \in \mathbb{R}^{n}$ and $t>0$.

Solution. This is because we can separate variables x_{1}, \cdots, x_{n} when computing Laplacian.

Problem 5. Use the fundamental solution to the heat equation to find a formula of solution to the following initial-boundary-value problem of the heat equation on half-line:

$$
\begin{cases}u_{t}=D u_{x x} & \text { for } x>0, t>0 \\ u(0, t)=0 & \text { for } t>0 \\ u(x, 0)=\phi(x) & \text { for } x>0\end{cases}
$$

where $D>0$ is a constant and ϕ is a compactly supported continuous function on $[0, \infty)$.

Solution. We can extend ϕ to $x \in \mathbb{R}$ by setting $\phi(x)=0$ if $x \leq 0$. Then u is given by

$$
u(x, t)=(K * \phi)(x)-(K * \phi)(-x)=\frac{1}{\sqrt{4 \pi D t}} \int_{\mathbb{R}} \phi(y)\left[e^{-\frac{(x-y)^{2}}{4 D t}}-e^{-\frac{(x+y)^{2}}{4 D t}}\right] d y
$$

It is easy to see u satisfies $u_{t}=D \Delta u$ since K does. Also because the integral of K over \mathbb{R} is 1 , and when $t \rightarrow 0, K(x, t) \rightarrow 0$ for $x \neq 0$, we see $K \rightarrow \delta$-function. Hence $u(x, 0)=(\delta * \phi)(x)-(\delta * \phi)(-x)=\phi(x)-\phi(-x)=\phi(x)$ for $x>0$. Finally the construction shows $u(0, t)=0$.

Problem 6. Let Ω be a bounded and smooth domain in \mathbb{R}^{d} and denote by n the unit exterior normal to the boundary $\partial \Omega$. Suppose $u=u(x, t)(x \in \Omega, t \geq 0)$ is a smooth and bounded function. Suppose also that

$$
\left\{\begin{array}{lr}
u_{t}=D \Delta u & \text { for } x \in \Omega, t>0 \\
\frac{\partial u}{\partial n}=0 & \text { for } x \in \partial \Omega, t>0 \\
u(x, 0)=\phi(x) & \text { for } x \in \Omega
\end{array}\right.
$$

for some $\phi \in C(\Omega)$. Show that

$$
\int_{\Omega} u(x, t) d x=\int_{\Omega} \phi(x) d x \quad \forall t>0
$$

Proof. By the smoothness and boundedness of u and Ω, we can differentiate the left hand side as

$$
\frac{d}{d t} \int_{\Omega} u(x, t) d x=\int_{\Omega} \frac{\partial u(x, t)}{\partial t} d x=D \int_{\Omega} \Delta u d x=D \int_{\partial \Omega} \frac{\partial u}{\partial n} d x=0
$$

which implies

$$
\int_{\Omega} u(x, t) d x=\int_{\Omega} u(x, 0) d x=\int_{\Omega} \phi(x) d x \quad \forall t>0 .
$$

