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Problem 1. Let f € C([0,1]) be given. Use the method of separation of
variables to find the series expansion of the solution u = u(x,t) to the following
initial-boundary-value problem:

Ut = Ugpy — U forO0<z<1,t>0,
u(0,t) =u(l,t) =0 fort >0,
u(z,0) = f(z) for0 <z <1

Solution. Suppose u has the following expansion:
u(z,t) = Z Xn(z)T(t).
n=0

By the equation we have
X (2)T5,(8) = X0 (2) T (t) — X (2) T (t)

ie.

T Xpw)

To(t)  Xn(x) -
where A, is a constant depending only on n. Combining the boundary condition
u(0,t) = u(1,t) = 0 with X//(z) = (A, +1)X,,(z) we have that \, +1 = —n?72,
and

Xn(x) = A, sin(nrx).
Solving TV, (t) = (—n?m2 —1)T},(t) we have Ty, (t) = Bpe~ "™+t hence in total

u(z,t) = Z Cp sin(nﬂx)e*(“2”2“)t (1)

n=0
where C,, = A, B,,. Pluging in ¢t = 0 and using u(z,0) = f(x) we have that, by
Fourier transform )
C, = 2/ f(x) sin(mnx)dx (2)
0
since

1
2/ sin(nmx) sin(mrx)de = dpmp.-
0



Combining (1) and (2) gives the answer.

Problem 2. Let Q C R" be a bounded and smooth domain. Let u € C?(Q2) be
a nonzero (real-valued) function and let A € R. Suppose —Au = Au in 2 and
u =0 on 092. Show that

A= (/Q \Vu\de>(/Qu2dz>_l >0.

Proof. By integration by parts

/—Aqux:/uAudxz/ u@d:ﬁ—/ |Vu\2d$:—/ |Vul*dz
Q Q oo On Q Q

Since u is nonzero, the result follows.

Problem 3. Find the Fourier transform for each of the following functions:

(1) f(x) = (1/2)X[=1,1), where x4 denotes the characteristic function of A4 (i.e.,
xa=1lifzeAand xya =0if x ¢ A);

Solution. We have

n 1 1 —ifx
f(§) = E/RiX[_Ll](x)e “dx

1 R
= e “*dx
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(2) (Optional) f(z) =1/(1+ 2?) (z € R).

Solution. We have

R 1 1
f(»s):ﬁ/Rsz

consider g(z) = e~%#/(1 + 22). When ¢ < 0, we consider '}, = [-R, R] U {z €
C:|z| = R and Im(z) > 0}, when £ > 0 we consider I', = [-R,R]U{z € C:
|z| = R and Im(z) < 0}. We also have

e T dy

ef e—¢
Res(g(z2);2 =1) = % Res(g(z);2 = —i) =



For the case ¢ < 0, we have

1 ) ) 1 C
— —i§(xz+i _ 3 +
|g(z)|7‘1+z26 ( y)‘i‘l—l—ZQey’Sl—l—Rg for z € Cf
likewise for & > 0, we have
1 ) ) 1 C
- —ig(z+iy) | _ 3 -
‘g(z)|_’1+z2e y’_‘1+z2€y’§1+R2 for 2 € O

From the above we deduce that

/ g(z)dz — 0, / g(z)dz — 0 as R — oo.
ct =

R CR
Hence
lim / g(2)dz = 2mi - Res(g(2); z = i) = me® (€£<0)
R—o00 F;

Varf() =
Rli_{nOo - /r g(2)dz = —2mi - Res(g(2); 2 = —i) = me™* (£ >0)

Combined with the case & = 0, where V27 f (0) = 7 by direct integration, we

have
f&) = \/Ze'f'.

Problem 4. (1) The Gaussian kernel (or heat kernel) in one space dimension
is defined to be

1 2
e a0t (xeR,t>0
Var Dt ( )
where D > 0 is a constant. Verify that K; = DK, for all z € R and t > 0.

K(z,t) =

Solution. Direct computation.

(2) Define now u(z,t) = K, (z,t) = [[\_, K(x;,t) for x = (z1,--- ,z,) € R"
and t > 0. Verify that u; = DAwu for all x € R™ and ¢ > 0.

Solution. This is because we can separate variables z1,- - - , z,, when computing
Laplacian.

Problem 5. Use the fundamental solution to the heat equation to find a
formula of solution to the following initial-boundary-value problem of the heat
equation on half-line:

uy = Dugy for x > 0,t > 0,
u(0,t) =0 for t > 0,
u(z,0) = ¢(z) for x>0,



where D > 0 is a constant and ¢ is a compactly supported continuous function
on [0, c0).

Solution. We can extend ¢ to z € R by setting ¢(x) = 0 if z < 0. Then v is
given by

(z—1)? (z+y)?
- T4D’Vt — e T4Dut ]dy

1
u(z,t) = (K x¢)(x) — (K * —T) = —— e
(@.8) = (K +0)(@) = (K 5 0)(-2) = —== [ olo)]
It is easy to see u satisfies uy = DAw since K does. Also because the integral of
K over Ris 1, and when t — 0, K(z,t) — 0 for z # 0, we see K — d-function.
Hence u(z,0) = (§ x ¢)(z) — (0 x ¢)(—z) = ¢(x) — ¢(—x) = ¢(z) for x > 0.

Finally the construction shows u(0,t¢) = 0.

Problem 6. Let Q be a bounded and smooth domain in R? and denote by n
the unit exterior normal to the boundary 9. Suppose u = u(x,t) (z € Q,¢ > 0)
is a smooth and bounded function. Suppose also that

u; = DAu forx € Q,t >0,
%:0 for z € 09, t > 0,
on

u(z,0) = ¢(z) for x € Q,

for some ¢ € C(Q2). Show that

/Qu(x,t)d:r:/gd)(x)dx vt > 0.

Proof. By the smoothness and boundedness of v and 2, we can differentiate the
left hand side as

d [ Ou(w,t) B ou ,
a/gu(x,t)dacf/Q 5 dach/QAud:va aﬂandxfo

which implies

/Qu(x,t)dx:/gu(x,())dx:/Q¢(x)d:v vt > 0.



