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Problem 1. Let f ∈ C([0, 1]) be given. Use the method of separation of
variables to find the series expansion of the solution u = u(x, t) to the following
initial-boundary-value problem:

ut = uxx − u for 0 < x < 1, t > 0,

u(0, t) = u(1, t) = 0 for t > 0,

u(x, 0) = f(x) for 0 < x < 1.

Solution. Suppose u has the following expansion:

u(x, t) =

∞∑
n=0

Xn(x)Tn(t).

By the equation we have

Xn(x)T ′n(t) = X ′′n(x)Tn(t)−Xn(x)Tn(t)

i.e.
T ′n(t)

Tn(t)
=
X ′′n(x)

Xn(x)
− 1 = λn

where λn is a constant depending only on n. Combining the boundary condition
u(0, t) = u(1, t) = 0 with X ′′n(x) = (λn+1)Xn(x) we have that λn+1 = −n2π2,
and

Xn(x) = An sin(nπx).

Solving T ′n(t) = (−n2π2−1)Tn(t) we have Tn(t) = Bne
−(n2π2+1)t, hence in total

u(x, t) =

∞∑
n=0

Cn sin(nπx)e−(π2n2+1)t (1)

where Cn = AnBn. Pluging in t = 0 and using u(x, 0) = f(x) we have that, by
Fourier transform

Cn = 2

∫ 1

0

f(x) sin(πnx)dx (2)

since

2

∫ 1

0

sin(nπx) sin(mπx)dx = δmn.
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Combining (1) and (2) gives the answer.

Problem 2. Let Ω ⊂ Rn be a bounded and smooth domain. Let u ∈ C2(Ω) be
a nonzero (real-valued) function and let λ ∈ R. Suppose −∆u = λu in Ω and
u = 0 on ∂Ω. Show that

λ =
(∫

Ω

|∇u|2dx
)(∫

Ω

u2dx
)−1

> 0.

Proof. By integration by parts∫
Ω

−λu2dx =

∫
Ω

u∆udx =

∫
∂Ω

u
∂u

∂n
dx−

∫
Ω

|∇u|2dx = −
∫

Ω

|∇u|2dx

Since u is nonzero, the result follows.

Problem 3. Find the Fourier transform for each of the following functions:

(1) f(x) = (1/2)χ[−1,1], where χA denotes the characteristic function of A (i.e.,
χA = 1 if x ∈ A and χA = 0 if x /∈ A);

Solution. We have

f̂(ξ) =
1√
2π

∫
R

1

2
χ[−1,1](x)e−iξxdx

=
1

2
√

2π

∫ 1

−1

e−iξxdx

=
1√
2π

eiξ − e−iξ

2iξ

=
sin ξ

ξ
√

2π
.

(2) (Optional) f(x) = 1/(1 + x2) (x ∈ R).

Solution. We have

f̂(ξ) =
1√
2π

∫
R

1

1 + x2
e−iξxdx

consider g(z) = e−iξz/(1 + z2). When ξ < 0, we consider Γ+
R = [−R,R] ∪ {z ∈

C : |z| = R and Im(z) > 0}, when ξ > 0 we consider Γ−R = [−R,R] ∪ {z ∈ C :
|z| = R and Im(z) < 0}. We also have

Res(g(z); z = i) =
eξ

2i
Res(g(z); z = −i) =

e−ξ

−2i
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For the case ξ < 0, we have

|g(z)| =
∣∣∣ 1

1 + z2
e−iξ(x+iy)

∣∣∣ =
∣∣∣ 1

1 + z2
eξy
∣∣∣ ≤ C

1 +R2
for z ∈ C+

R

likewise for ξ > 0, we have

|g(z)| =
∣∣∣ 1

1 + z2
e−iξ(x+iy)

∣∣∣ =
∣∣∣ 1

1 + z2
eξy
∣∣∣ ≤ C

1 +R2
for z ∈ C−R

From the above we deduce that∫
C+

R

g(z)dz −→ 0,

∫
C−

R

g(z)dz −→ 0 as R→∞.

Hence

√
2πf̂(ξ) =


lim
R→∞

∫
Γ+
R

g(z)dz = 2πi · Res(g(z); z = i) = πeξ (ξ < 0)

lim
R→∞

−
∫

Γ−
R

g(z)dz = −2πi · Res(g(z); z = −i) = πe−ξ (ξ > 0)

Combined with the case ξ = 0, where
√

2πf̂(0) = π by direct integration, we
have

f̂(ξ) =

√
π

2
e−|ξ|.

Problem 4. (1) The Gaussian kernel (or heat kernel) in one space dimension
is defined to be

K(x, t) =
1√

4πDt
e−

x2

4Dt (x ∈ R, t > 0)

where D > 0 is a constant. Verify that Kt = DKxx for all x ∈ R and t > 0.

Solution. Direct computation.

(2) Define now u(x, t) = Kn(x, t) =
∏n
i=1K(xi, t) for x = (x1, · · · , xn) ∈ Rn

and t > 0. Verify that ut = D∆u for all x ∈ Rn and t > 0.

Solution. This is because we can separate variables x1, · · · , xn when computing
Laplacian.

Problem 5. Use the fundamental solution to the heat equation to find a
formula of solution to the following initial-boundary-value problem of the heat
equation on half-line: 

ut = Duxx for x > 0, t > 0,

u(0, t) = 0 for t > 0,

u(x, 0) = φ(x) for x > 0,
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where D > 0 is a constant and φ is a compactly supported continuous function
on [0,∞).

Solution. We can extend φ to x ∈ R by setting φ(x) = 0 if x ≤ 0. Then u is
given by

u(x, t) = (K ∗ φ)(x)− (K ∗ φ)(−x) =
1√

4πDt

∫
R
φ(y)

[
e−

(x−y)2

4Dt − e−
(x+y)2

4Dt

]
dy

It is easy to see u satisfies ut = D∆u since K does. Also because the integral of
K over R is 1, and when t→ 0, K(x, t)→ 0 for x 6= 0, we see K → δ-function.
Hence u(x, 0) = (δ ∗ φ)(x) − (δ ∗ φ)(−x) = φ(x) − φ(−x) = φ(x) for x > 0.
Finally the construction shows u(0, t) = 0.

Problem 6. Let Ω be a bounded and smooth domain in Rd and denote by n
the unit exterior normal to the boundary ∂Ω. Suppose u = u(x, t) (x ∈ Ω, t ≥ 0)
is a smooth and bounded function. Suppose also that

ut = D∆u for x ∈ Ω, t > 0,

∂u

∂n
= 0 for x ∈ ∂Ω, t > 0,

u(x, 0) = φ(x) for x ∈ Ω,

for some φ ∈ C(Ω). Show that∫
Ω

u(x, t)dx =

∫
Ω

φ(x)dx ∀t > 0.

Proof. By the smoothness and boundedness of u and Ω, we can differentiate the
left hand side as

d

dt

∫
Ω

u(x, t)dx =

∫
Ω

∂u(x, t)

∂t
dx = D

∫
Ω

∆udx = D

∫
∂Ω

∂u

∂n
dx = 0

which implies ∫
Ω

u(x, t)dx =

∫
Ω

u(x, 0)dx =

∫
Ω

φ(x)dx ∀t > 0.
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