Math 210C Homework 6 Solutions

Yucheng Tu

May 2018

Problem 1. The Fourier transform for any $u \in L^{1}\left(\mathbb{R}^{n}\right)$ is defined by

$$
\hat{u}(\xi)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} u(x) e^{-i x \cdot \xi} d x \quad \forall \xi \in \mathbb{R}^{n}
$$

Prove the following:
(1) For any $h \in \mathbb{R}^{n}, \lambda>0$, and $u \in L^{1}\left(\mathbb{R}^{n}\right), \widehat{\tau_{h} u}(\xi)=e^{-i h \xi} \hat{u}(\xi)$ and $\widehat{\delta_{\lambda} u}(\xi)=$ $\lambda^{n} \hat{u}(\lambda \xi)\left(\xi \in \mathbb{R}^{n}\right)$, where $\tau_{h} u(x)=u(x-h)$ and $\delta_{\lambda} u(x)=u(x / \lambda)$.

Proof.

$$
\begin{aligned}
\widehat{\tau_{h} u}(\xi) & =\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} \tau_{h} u(x) e^{-i x \cdot \xi} d x, & \widehat{\delta_{\lambda} u}(\xi) & =\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} \delta_{\lambda} u(x) e^{-i x \cdot \xi} d x \\
& =\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} u(x-h) e^{-i x \cdot \xi} d x & & =\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} u(x / \lambda) e^{-i x \cdot \xi} d x \\
& =\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} u(x) e^{-i(x+h) \cdot \xi} d x & & =\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} u(x) e^{-i \lambda x \cdot \xi} d\left(\lambda^{n} x\right) \\
& =e^{-i h \xi} \hat{u}(\xi) & & =\lambda^{n} \hat{u}(\lambda \xi)
\end{aligned}
$$

(2) For any $u \in C_{c}^{2}\left(\mathbb{R}^{n}\right), \widehat{\Delta u}(\xi)=-|\xi|^{2} \hat{u}(\xi)(\xi \in \mathbb{R})$.

Proof.

$$
\begin{array}{rlr}
\widehat{\Delta u}(\xi) & =\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} \Delta u(x) e^{-i x \cdot \xi} d x & \\
& =\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}}-\nabla u(x) \cdot \nabla_{x} e^{-i x \cdot \xi} d x & (\operatorname{supp}(u) \text { is compact }) \\
& =\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} u(x) \Delta_{x} e^{-i x \cdot \xi} d x & (\operatorname{supp}(u) \text { is compact }) \\
& =-\frac{|\xi|^{2}}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} u(x) e^{-i x \cdot \xi} d x & \\
& =-|\xi|^{2} \hat{u}(\xi)
\end{array}
$$

(3) If $u, v \in C_{c}\left(\mathbb{R}^{n}\right)$, then $\widehat{u * v}=(2 \pi)^{\frac{n}{2}} \hat{u} \hat{v}$.

Proof.

$$
\begin{aligned}
\widehat{u * v}(\xi) & =\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}}\left[\int_{\mathbb{R}^{n}} u(x-y) v(y) d y\right] e^{-i x \cdot \xi} d x \\
& =\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}}\left[\int_{\mathbb{R}^{n}} u(x-y) e^{-i(x-y) \cdot \xi} d x\right] v(y) e^{-i y \cdot \xi} d y \\
& =\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} u(x) e^{-i(x) \cdot \xi} d x \int_{\mathbb{R}^{n}} v(y) e^{-i y \cdot \xi} d y \\
& =(2 \pi)^{\frac{n}{2}} \hat{u}(\xi) \hat{v}(\xi)
\end{aligned}
$$

Problem 2. Let $D>0$ and $\alpha>0$ be two given constants, and consider the diffusion equation

$$
u_{t}=D u_{x x}+\alpha u \quad(x \in \mathbb{R}, t>0) .
$$

Let $k>0$ and define $u_{k}(x, t)=e^{\omega t} \sin (k x)(x \in \mathbb{R}, t>0)$, where ω is a constant to be determined.
(1) Find the formula for $\omega=\omega(k, D, \alpha)$ so that $u_{k}(x, t)$ solves the above diffusion equation.
(2) With that $\omega=\omega(k, D, \alpha)$, find all $k>0$ such that $u_{k}(x, t)$ are bounded as $t \rightarrow \infty$.

Solution. Directly plug u_{k} into the equation we get

$$
\omega=\alpha-D k^{2}
$$

To make u_{k} bounded, $\omega \leq 0$. Hence $k \geq \sqrt{\alpha / D}$.
Problem 3. Let $u=u(x, t)$ solve the heat equation $u_{t}=\Delta u\left(x \in \mathbb{R}^{n}, t>0\right)$ with the initial condition $u(x, 0)=f(x)\left(x \in \mathbb{R}^{n}\right)$.
(1) Let $f \in C\left(\mathbb{R}^{n}\right)$ be bounded. Show that $|u(x, t)| \leq \sup _{y \in \mathbb{R}^{n}}|f(y)|$ for all $x \in \mathbb{R}^{n}$ and $t \geq 0$.

Proof. Actually the maximum holds when u satisfy some growth conditions:

$$
|u(x, t)| \leq A e^{B|x|^{2}} \text { for some } A, B>0 \text { and } \forall t>0
$$

and there exists lots of nonphysical solutions. For the proof of maximum principle see Partial Differential Equations by L. Evans.
(2) (Optional) Assume in addition $f \in L^{1}\left(\mathbb{R}^{n}\right)$. Show that $\lim _{t \rightarrow \infty} u(x, t)=0$ for all $x \in \mathbb{R}^{n}$.

Proof. We have $\max _{x \in \mathbb{R}^{n}}|K(x, t)| \rightarrow 0$ as $t \rightarrow \infty$. Hence it follows $|u(x, t)|=$ $|K * f(x, t)| \leq\|K\|_{\infty}\|f\|_{1} \rightarrow 0$.

Problem 4. Let $\Omega \subset \mathbb{R}^{n}$ be a smooth and bounded domain, $D>0$ and $T>0$ constants, $f \in C(\Omega \times[0, T]), g \in C(\partial \Omega \times[0, T])$, and $\phi \in C(\Omega)$. Use the energy method to prove the uniqueness of solution to the initial-boundary-value problem: $u_{t}-D \Delta u=f$ in $\Omega \times(0, T], u=g$ on $\partial \Omega \times(0, T]$, and $u=\phi$ on $\Omega \times\{0\}$.

Proof. Consider the energy at $t>0$:

$$
E(t)=\int_{\Omega} u^{2}(x, t) d x
$$

Suppose u_{1} and u_{2} are solutions to the described problem, let $u=u_{1}-u_{2}$, then u has zero boundary conditions. We have

$$
\begin{aligned}
E^{\prime}(t) & =\frac{d}{d t} \int_{\Omega} u(x, t)^{2} d x=\int_{\Omega} 2 u u_{t} d x \\
& =\int_{\Omega} 2 D u \Delta u d x \\
& =-\int_{\Omega} 2 D|\nabla u|^{2} d x \leq 0
\end{aligned}
$$

Hence $E(t)$ is decreasing in t. However $E(0)=0$ and $E(t) \geq 0$ by definition, therefore $E(t)=0 \forall t>0$. Hence $u \equiv 0$ and $u_{1}=u_{2}$.

Problem 5. (The Markov property of solutions to diffusion equations.) Let $u=u(x, t)$ solve the diffusion equation $u_{t}=D \Delta u$ in $\Omega \times(0, \infty)$, with the zero Dirichlet boundary condition $u(x, t)=0(x \in \partial \Omega, t>0)$, where $D>0$ is the diffusion constant and Ω is a bounded and smooth domain in \mathbb{R}^{n}. Let $t_{1}>0$ and let $u_{1}=u_{1}(x, t)$ solve the diffusion equation $u_{1 t}=D \Delta u_{1}$ in $\Omega \times(0, \infty)$, with the zero Dirichlet boundary condition $u_{1}(x, t)=0(x \in \partial \Omega, t>0)$ and the initial condition $u_{1}(x, 0)=u\left(x, t_{1}\right)(x \in \Omega)$. Prove that $u\left(x, t_{1}+t_{2}\right)=u_{1}\left(x, t_{2}\right)$ for any $x \in \Omega$ and any $t_{2}>0$.

Proof. Set $v(x, t)=u\left(x, t+t_{1}\right)-u_{1}(x, t)$, then v satisfies the same diffusion equation with zero initial and boundary condition. By the uniqueness of the solution from Problem 4. we have $v \equiv 0$.

Problem 6. Let $D>0, \kappa>0, Y(x, t)=e^{-\kappa t} K(x, t)$, and $K(x, t)=$ $(4 \pi D t)^{-n / 2} e^{\frac{-|x|^{2}}{4 D t}}\left(x \in \mathbb{R}^{n}, t>0\right)$.
(1) Verify that $Y_{t}-D \Delta Y+\kappa Y=0$ in $\mathbb{R}^{n} \times(0, \infty)$.

Proof. By direct calculation.
(2) Let $f \in C\left(\mathbb{R}^{n}\right)$ be bounded. Use the kernel $Y(x, t)$ to find a formula of the solution to the initial-value problem

$$
\left\{\begin{array}{l}
u_{t}-\Delta u+\kappa u=0 \text { in } \mathbb{R}^{n} \times(0, \infty) \\
u=f \text { on } \mathbb{R}^{n} \times 0
\end{array}\right.
$$

Solution. Taking $D=1$, we have

$$
u(x, t)=f * Y=\int_{\mathbb{R}^{n}} f(y) Y(x-y, t) d y
$$

It is easy to see that u satisfies the equation.

