Math 210C Homework 6 Solutions

Yucheng Tu

May 2018

Problem 1. The Fourier transform for any $u \in L^1(\mathbb{R}^n)$ is defined by

$$\hat{u}(\xi) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} u(x) e^{-ix \cdot \xi} dx \qquad \forall \xi \in \mathbb{R}^n$$

Prove the following:

(1) For any $h \in \mathbb{R}^n$, $\lambda > 0$, and $u \in L^1(\mathbb{R}^n)$, $\widehat{\tau_h u}(\xi) = e^{-ih\xi}\hat{u}(\xi)$ and $\widehat{\delta_{\lambda} u}(\xi) = \lambda^n \hat{u}(\lambda\xi)$ ($\xi \in \mathbb{R}^n$), where $\tau_h u(x) = u(x-h)$ and $\delta_{\lambda} u(x) = u(x/\lambda)$.

Proof.

$$\widehat{\tau_h u}(\xi) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \tau_h u(x) e^{-ix \cdot \xi} dx, \quad \widehat{\delta_\lambda u}(\xi) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \delta_\lambda u(x) e^{-ix \cdot \xi} dx$$
$$= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} u(x-h) e^{-ix \cdot \xi} dx \qquad = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} u(x/\lambda) e^{-ix \cdot \xi} dx$$
$$= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} u(x) e^{-i(x+h) \cdot \xi} dx \qquad = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} u(x) e^{-i\lambda x \cdot \xi} d(\lambda^n x)$$
$$= e^{-ih\xi} \hat{u}(\xi) \qquad = \lambda^n \hat{u}(\lambda\xi)$$

(2) For any $u \in C_c^2(\mathbb{R}^n)$, $\widehat{\Delta u}(\xi) = -|\xi|^2 \hat{u}(\xi) \ (\xi \in \mathbb{R})$. Proof.

$$\begin{split} \widehat{\Delta u}(\xi) &= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \Delta u(x) e^{-ix \cdot \xi} dx \\ &= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} -\nabla u(x) \cdot \nabla_x e^{-ix \cdot \xi} dx \qquad (\mathrm{supp}(u) \text{ is compact}) \\ &= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} u(x) \Delta_x e^{-ix \cdot \xi} dx \qquad (\mathrm{supp}(u) \text{ is compact}) \\ &= -\frac{|\xi|^2}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} u(x) e^{-ix \cdot \xi} dx \qquad (\mathrm{supp}(u) \text{ is compact}) \\ &= -|\xi|^2 \widehat{u}(\xi) \end{split}$$

(3) If $u, v \in C_c(\mathbb{R}^n)$, then $\widehat{u * v} = (2\pi)^{\frac{n}{2}} \hat{u} \hat{v}$.

Proof.

$$\begin{split} \widehat{u*v}(\xi) &= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \left[\int_{\mathbb{R}^n} u(x-y)v(y)dy \right] e^{-ix\cdot\xi} dx \\ &= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \left[\int_{\mathbb{R}^n} u(x-y)e^{-i(x-y)\cdot\xi}dx \right] v(y)e^{-iy\cdot\xi}dy \\ &= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} u(x)e^{-i(x)\cdot\xi}dx \int_{\mathbb{R}^n} v(y)e^{-iy\cdot\xi}dy \\ &= (2\pi)^{\frac{n}{2}}\widehat{u}(\xi)\widehat{v}(\xi). \end{split}$$

Problem 2. Let D > 0 and $\alpha > 0$ be two given constants, and consider the diffusion equation

$$u_t = Du_{xx} + \alpha u \qquad (x \in \mathbb{R}, t > 0).$$

Let k > 0 and define $u_k(x,t) = e^{\omega t} \sin(kx) (x \in \mathbb{R}, t > 0)$, where ω is a constant to be determined.

(1) Find the formula for $\omega = \omega(k, D, \alpha)$ so that $u_k(x, t)$ solves the above diffusion equation.

(2) With that $\omega = \omega(k, D, \alpha)$, find all k > 0 such that $u_k(x, t)$ are bounded as $t \to \infty$.

Solution. Directly plug u_k into the equation we get

$$\omega = \alpha - Dk^2$$

To make u_k bounded, $\omega \leq 0$. Hence $k \geq \sqrt{\alpha/D}$.

Problem 3. Let u = u(x,t) solve the heat equation $u_t = \Delta u$ $(x \in \mathbb{R}^n, t > 0)$ with the initial condition u(x,0) = f(x) $(x \in \mathbb{R}^n)$. (1) Let $f \in C(\mathbb{R}^n)$ be bounded. Show that $|u(x,t)| \leq \sup_{y \in \mathbb{R}^n} |f(y)|$ for all $x \in \mathbb{R}^n$ and $t \geq 0$.

Proof. Actually the maximum holds when u satisfy some growth conditions:

$$|u(x,t)| \leq Ae^{B|x|^2}$$
 for some $A, B > 0$ and $\forall t > 0$

and there exists lots of nonphysical solutions. For the proof of maximum principle see *Partial Differential Equations* by L. Evans.

(2) (Optional) Assume in addition $f \in L^1(\mathbb{R}^n)$. Show that $\lim_{t\to\infty} u(x,t) = 0$ for all $x \in \mathbb{R}^n$.

Proof. We have $\max_{x \in \mathbb{R}^n} |K(x,t)| \to 0$ as $t \to \infty$. Hence it follows $|u(x,t)| = |K * f(x,t)| \le ||K||_{\infty} ||f||_1 \to 0$.

Problem 4. Let $\Omega \subset \mathbb{R}^n$ be a smooth and bounded domain, D > 0 and T > 0 constants, $f \in C(\Omega \times [0,T])$, $g \in C(\partial\Omega \times [0,T])$, and $\phi \in C(\Omega)$. Use the energy method to prove the uniqueness of solution to the initial-boundary-value problem: $u_t - D\Delta u = f$ in $\Omega \times (0,T]$, u = g on $\partial\Omega \times (0,T]$, and $u = \phi$ on $\Omega \times \{0\}$.

Proof. Consider the energy at t > 0:

$$E(t) = \int_{\Omega} u^2(x,t) dx$$

Suppose u_1 and u_2 are solutions to the described problem, let $u = u_1 - u_2$, then u has zero boundary conditions. We have

$$E'(t) = \frac{d}{dt} \int_{\Omega} u(x,t)^2 dx = \int_{\Omega} 2uu_t dx$$
$$= \int_{\Omega} 2Du\Delta u dx$$
$$= -\int_{\Omega} 2D|\nabla u|^2 dx \le 0$$

Hence E(t) is decreasing in t. However E(0) = 0 and $E(t) \ge 0$ by definition, therefore $E(t) = 0 \ \forall t > 0$. Hence $u \equiv 0$ and $u_1 = u_2$.

Problem 5. (The Markov property of solutions to diffusion equations.) Let u = u(x,t) solve the diffusion equation $u_t = D\Delta u$ in $\Omega \times (0,\infty)$, with the zero Dirichlet boundary condition u(x,t) = 0 ($x \in \partial\Omega, t > 0$), where D > 0 is the diffusion constant and Ω is a bounded and smooth domain in \mathbb{R}^n . Let $t_1 > 0$ and let $u_1 = u_1(x,t)$ solve the diffusion equation $u_{1t} = D\Delta u_1$ in $\Omega \times (0,\infty)$, with the zero Dirichlet boundary condition $u_1(x,t) = 0$ ($x \in \partial\Omega, t > 0$) and the initial condition $u_1(x,0) = u(x,t_1)$ ($x \in \Omega$). Prove that $u(x,t_1+t_2) = u_1(x,t_2)$ for any $x \in \Omega$ and any $t_2 > 0$.

Proof. Set $v(x,t) = u(x,t+t_1) - u_1(x,t)$, then v satisfies the same diffusion equation with zero initial and boundary condition. By the uniqueness of the solution from **Problem 4.** we have $v \equiv 0$.

Problem 6. Let D > 0, $\kappa > 0$, $Y(x,t) = e^{-\kappa t}K(x,t)$, and $K(x,t) = (4\pi Dt)^{-n/2}e^{\frac{-|x|^2}{4Dt}}$ $(x \in \mathbb{R}^n, t > 0).$

(1) Verify that $Y_t - D\Delta Y + \kappa Y = 0$ in $\mathbb{R}^n \times (0, \infty)$.

Proof. By direct calculation.

(2) Let $f \in C(\mathbb{R}^n)$ be bounded. Use the kernel Y(x,t) to find a formula of the solution to the initial-value problem

$$\begin{cases} u_t - \Delta u + \kappa u = 0 \text{ in } \mathbb{R}^n \times (0, \infty), \\ u = f \text{ on } \mathbb{R}^n \times 0. \end{cases}$$

Solution. Taking D = 1, we have

$$u(x,t) = f * Y = \int_{\mathbb{R}^n} f(y)Y(x-y,t)dy$$

It is easy to see that u satisfies the equation.