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Problem 1. The Fourier transform for any u ∈ L1(Rn) is defined by

û(ξ) =
1

(2π)n/2

∫
Rn

u(x)e−ix·ξdx ∀ξ ∈ Rn

Prove the following:

(1) For any h ∈ Rn , λ > 0, and u ∈ L1(Rn), τ̂hu(ξ) = e−ihξû(ξ) and δ̂λu(ξ) =
λnû(λξ) (ξ ∈ Rn) , where τhu(x) = u(x− h) and δλu(x) = u(x/λ).

Proof.

τ̂hu(ξ) =
1

(2π)n/2

∫
Rn

τhu(x)e−ix·ξdx, δ̂λu(ξ) =
1

(2π)n/2

∫
Rn

δλu(x)e−ix·ξdx

=
1

(2π)n/2

∫
Rn

u(x− h)e−ix·ξdx =
1

(2π)n/2

∫
Rn

u(x/λ)e−ix·ξdx

=
1

(2π)n/2

∫
Rn

u(x)e−i(x+h)·ξdx =
1

(2π)n/2

∫
Rn

u(x)e−iλx·ξd(λnx)

= e−ihξû(ξ) = λnû(λξ)

(2) For any u ∈ C2
c (Rn), ∆̂u(ξ) = −|ξ|2û(ξ) (ξ ∈ R).

Proof.

∆̂u(ξ) =
1

(2π)n/2

∫
Rn

∆u(x)e−ix·ξdx

=
1

(2π)n/2

∫
Rn

−∇u(x) · ∇xe−ix·ξdx (supp(u) is compact)

=
1

(2π)n/2

∫
Rn

u(x)∆xe
−ix·ξdx (supp(u) is compact)

= − |ξ|2

(2π)n/2

∫
Rn

u(x)e−ix·ξdx

= −|ξ|2û(ξ)
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(3) If u, v ∈ Cc(Rn), then û ∗ v = (2π)
n
2 ûv̂.

Proof.

û ∗ v(ξ) =
1

(2π)n/2

∫
Rn

[ ∫
Rn

u(x− y)v(y)dy

]
e−ix·ξdx

=
1

(2π)n/2

∫
Rn

[ ∫
Rn

u(x− y)e−i(x−y)·ξdx

]
v(y)e−iy·ξdy

=
1

(2π)n/2

∫
Rn

u(x)e−i(x)·ξdx

∫
Rn

v(y)e−iy·ξdy

= (2π)
n
2 û(ξ)v̂(ξ).

Problem 2. Let D > 0 and α > 0 be two given constants, and consider the
diffusion equation

ut = Duxx + αu (x ∈ R, t > 0).

Let k > 0 and define uk(x, t) = eωt sin(kx)(x ∈ R, t > 0), where ω is a constant
to be determined.
(1) Find the formula for ω = ω(k,D, α) so that uk(x, t) solves the above diffu-
sion equation.
(2) With that ω = ω(k,D, α), find all k > 0 such that uk(x, t) are bounded as
t→∞.

Solution. Directly plug uk into the equation we get

ω = α−Dk2

To make uk bounded, ω ≤ 0. Hence k ≥
√
α/D.

Problem 3. Let u = u(x, t) solve the heat equation ut = ∆u (x ∈ Rn, t > 0)
with the initial condition u(x, 0) = f(x) (x ∈ Rn).
(1) Let f ∈ C(Rn) be bounded. Show that |u(x, t)| ≤ supy∈Rn |f(y)| for all
x ∈ Rn and t ≥ 0.

Proof. Actually the maximum holds when u satisfy some growth conditions:

|u(x, t)| ≤ AeB|x|
2

for some A,B > 0 and ∀t > 0

and there exists lots of nonphysical solutions. For the proof of maximum prin-
ciple see Partial Differential Equations by L. Evans.

(2) (Optional) Assume in addition f ∈ L1(Rn). Show that limt→∞ u(x, t) = 0
for all x ∈ Rn.
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Proof. We have maxx∈Rn |K(x, t)| → 0 as t → ∞. Hence it follows |u(x, t)| =
|K ∗ f(x, t)| ≤ ‖K‖∞‖f‖1 → 0.

Problem 4. Let Ω ⊂ Rn be a smooth and bounded domain, D > 0 and
T > 0 constants, f ∈ C(Ω× [0, T ]), g ∈ C(∂Ω× [0, T ]), and φ ∈ C(Ω). Use the
energy method to prove the uniqueness of solution to the initial-boundary-value
problem: ut − D∆u = f in Ω × (0, T ], u = g on ∂Ω × (0, T ], and u = φ on
Ω× {0}.

Proof. Consider the energy at t > 0:

E(t) =

∫
Ω

u2(x, t)dx

Suppose u1 and u2 are solutions to the described problem, let u = u1−u2, then
u has zero boundary conditions. We have

E′(t) =
d

dt

∫
Ω

u(x, t)2dx =

∫
Ω

2uutdx

=

∫
Ω

2Du∆udx

= −
∫

Ω

2D|∇u|2dx ≤ 0

Hence E(t) is decreasing in t. However E(0) = 0 and E(t) ≥ 0 by definition,
therefore E(t) = 0 ∀t > 0. Hence u ≡ 0 and u1 = u2.

Problem 5. (The Markov property of solutions to diffusion equations.) Let
u = u(x, t) solve the diffusion equation ut = D∆u in Ω× (0,∞), with the zero
Dirichlet boundary condition u(x, t) = 0 (x ∈ ∂Ω, t > 0), where D > 0 is the
diffusion constant and Ω is a bounded and smooth domain in Rn . Let t1 > 0
and let u1 = u1(x, t) solve the diffusion equation u1t = D∆u1 in Ω × (0,∞),
with the zero Dirichlet boundary condition u1(x, t) = 0 (x ∈ ∂Ω, t > 0) and the
initial condition u1(x, 0) = u(x, t1) (x ∈ Ω). Prove that u(x, t1 + t2) = u1(x, t2)
for any x ∈ Ω and any t2 > 0.

Proof. Set v(x, t) = u(x, t + t1) − u1(x, t), then v satisfies the same diffusion
equation with zero initial and boundary condition. By the uniqueness of the
solution from Problem 4. we have v ≡ 0.

Problem 6. Let D > 0, κ > 0, Y (x, t) = e−κtK(x, t), and K(x, t) =

(4πDt)−n/2e
−|x|2
4Dt (x ∈ Rn, t > 0).

(1) Verify that Yt −D∆Y + κY = 0 in Rn × (0,∞).

Proof. By direct calculation.
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(2) Let f ∈ C(Rn) be bounded. Use the kernel Y (x, t) to find a formula of the
solution to the initial-value problem{

ut −∆u+ κu = 0 in Rn × (0,∞),

u = f on Rn × 0.

Solution. Taking D = 1, we have

u(x, t) = f ∗ Y =

∫
Rn

f(y)Y (x− y, t)dy

It is easy to see that u satisfies the equation.
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