Math 210C: Mathematical Methods in Physical Sciences and Engineering Spring quarter, 2018 Homework Assignment 1 Due Monday, April 9, 2018

- 1. For each of the followings partial differential equations (PDEs), find out its order and determine if it is a linear equation:
 - (1) $u_x + uu_y = 0$ with u = u(x, y);
 - (2) $u_t \Delta u = u(u 1/2)(u 1)$ with u = u(x, t) and $x \in \mathbb{R}^n$;
 - (3) $\Delta u = \sin |x|$ with u = u(x) and $x \in \mathbb{R}^n$;
 - (4) $\Delta u \sinh u = 0$ with u = u(x, y, z);
 - (5) $u_{tt} \Delta u + \Delta^2 u = 0$ with u = u(x, t) and $x \in \mathbb{R}^n$.
- 2. Let $u \in C^2(\mathbb{R}^n)$. Prove that $\nabla \cdot \nabla u = \Delta u$.
- 3. Let $\Omega = (0, 1) \times (0, 1)$. Show that there exists no $u \in C^2(\overline{\Omega})$ such that $\Delta u = 1$ in Ω and u = 0 on $\partial \Omega$.
- 4. Verify that $u_n(x, y) = \sin(nx) \sinh(ny)$ is a solution to $\Delta u = 0$ for any n > 0.
- 5. Let u = u(x, y). Solve $u_x x + u = 0$.
- 6. Let u = u(x, y) and solve the equation $3u_y + u_{xy} = 0$.
- 7. Let u = u(x, y). Find the general solution to the equation $u_x + 2xy^2u_y = 0$.
- 8. Let u = u(x, y). Solve the equation $\sqrt{1 x^2}u_x + u_y = 0$ with $u(0, y) = e^{-y^2}$.