Math 210C: Mathematical Methods in Physical Sciences and Engineering Spring quarter, 2018

 Homework Assignment 1

 Homework Assignment 1}

Due Monday, April 9, 2018

1. For each of the followings partial differential equations (PDEs), find out its order and determine if it is a linear equation:
(1) $u_{x}+u u_{y}=0$ with $u=u(x, y)$;
(2) $u_{t}-\Delta u=u(u-1 / 2)(u-1)$ with $u=u(x, t)$ and $x \in \mathbb{R}^{n}$;
(3) $\Delta u=\sin |x|$ with $u=u(x)$ and $x \in \mathbb{R}^{n}$;
(4) $\Delta u-\sinh u=0$ with $u=u(x, y, z)$;
(5) $u_{t t}-\Delta u+\Delta^{2} u=0$ with $u=u(x, t)$ and $x \in \mathbb{R}^{n}$.
2. Let $u \in C^{2}\left(\mathbb{R}^{n}\right)$. Prove that $\nabla \cdot \nabla u=\Delta u$.
3. Let $\Omega=(0,1) \times(0,1)$. Show that there exists no $u \in C^{2}(\bar{\Omega})$ such that $\Delta u=1$ in Ω and $u=0$ on $\partial \Omega$.
4. Verify that $u_{n}(x, y)=\sin (n x) \sinh (n y)$ is a solution to $\Delta u=0$ for any $n>0$.
5. Let $u=u(x, y)$. Solve $u_{x} x+u=0$.
6. Let $u=u(x, y)$ and solve the equation $3 u_{y}+u_{x y}=0$.
7. Let $u=u(x, y)$. Find the general solution to the equation $u_{x}+2 x y^{2} u_{y}=0$.
8. Let $u=u(x, y)$. Solve the equation $\sqrt{1-x^{2}} u_{x}+u_{y}=0$ with $u(0, y)=e^{-y^{2}}$.
