Math 210C: Mathematical Methods in Physical Sciences and Engineering Spring quarter, 2018

 Homework Assignment 2

 Homework Assignment 2}

Due Wednesday, April 18, 2018

1. Consider the initial-value problem

$$
\begin{cases}u_{x}+y u_{y}=0 & \text { for } x, y \in \mathbb{R} \\ u(x, 0)=\phi(x) & \text { for } x \in \mathbb{R}\end{cases}
$$

Prove the following:
(1) If $\phi(x)=x(x \in \mathbb{R})$ then this initial-value problem does not have a solution;
(2) If $\phi(x)=1(x \in \mathbb{R})$ then this initial-value problem has many solutions.
2. Solve the following Cauchy problems of first-order equations:
(1) $u_{x}+x u_{y}-u_{z}=u$ and $u(x, y, 1)=x+y$;
(2) $u u_{x}+y u_{y}=x$ and $u(x, 1)=2 x$.
3. Classify each of the following second-order equations into elliptic, hyperbolic, or parabolic equations:
(1) $2 u_{x x}-6 u_{x y}+3 u_{y y}=0$;
(2) $u_{x x}-4 u_{x y}+4 u_{y y}=0$;
(3) $2 u_{x x}-u_{x y}+3 u_{y y}=0$.
4. Find infinitely many solutions of the form $u(x, y)=f(x)+g(y)$ to the boundary-value problem: $\Delta u=0$ on the upper half plane $\{(x, y): y>0\}$ and the boundary condition $u(x, 0)=1(-\infty<x<\infty)$.
5. Let a and b be two positive numbers with $a<b$. Solve Poisson's equation $\Delta u=1$ in $a<r<b$ with the boundary condition $u=0$ on the circles $r=a$ and $r=b$, where $r=\sqrt{x^{2}+y^{2}}$.
6. Solve the one-dimensional eigenvalue problem $-u^{\prime \prime}=\lambda u$ on $(0, L)$ and $u^{\prime}(0)=u^{\prime}(L)=0$ for some given $L>0$.
7. Use the method of separation of variables to solve the following boundary-value problem of Laplace's equation:

$$
\begin{cases}u_{x x}+u_{y y}=0 & \text { for } 0<x<\pi, 0<y<\pi \\ u_{x}(0, y)=0 \text { and } u_{x}(\pi, y)=0 & \text { for } 0<y<\pi \\ u(x, 0)=0 \text { and } u(x, \pi)=g(x) & \text { for } 0<x<\pi\end{cases}
$$

where $g(x)$ is a given, continuous function on $[0, \pi]$.

