Math 210C: Mathematical Methods in Physical Sciences and Engineering Spring quarter, 2018
 Homework Assignment 3

Due Wednesday, April 25, 2018

1. For each integer $n \geq 1$, define $u_{n}, v_{n}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ in the polar coordinates by $u_{n}(r, \theta)=r^{n} \cos (n \theta)$ and $v_{n}(r, \theta)=r^{n} \sin (n \theta)$. Verify that both u_{n} and v_{n} are harmonic functions in \mathbb{R}^{2}.
2. Let $u \in C^{2}\left(\mathbb{R}^{2}\right)$. Let $\xi=\xi(x, y)$ and $\eta=\eta(x, y)$ be smooth functions that define a bijective map from \mathbb{R}^{2} to \mathbb{R}^{2} with a smooth inverse $x=x(\xi, \eta)$ and $y=y(\xi, \eta)$. Define $v(\xi, \eta)=u(x, y)$ with $x=x(\xi, \eta)$ and $y=y(\xi, \eta)$ for for any $(\xi, \eta) \in \mathbb{R}^{2}$.
(1) Verify that

$$
\Delta u(x, y)=v_{\xi \xi}\left|\nabla_{(x, y)} \xi\right|^{2}+v_{\eta \eta}\left|\nabla_{(x, y)} \eta\right|^{2}+2 v_{\xi \eta} \nabla_{(x, y)} \xi \cdot \nabla_{(x, y)} \eta+v_{\xi} \Delta_{(x, y)} \xi+v_{\eta} \Delta_{(x, y)} \eta .
$$

(2) Use Part (1) to show that the Laplacian in the polar coordinates (r, θ) is given by

$$
\Delta_{(x, y)} u(r, \theta)=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta} .
$$

3. Let $n \geq 2$ be an integer and $r=|x|=\sqrt{x_{1}^{2}+\ldots x_{n}^{2}}$ with $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. Let $u \in C^{2}(\mathbb{R})$.
(1) Express $\Delta u=\sum_{j=1}^{n} \partial^{2} u / \partial x_{j}^{2}$ in terms of $u^{\prime}(r)$ and $u^{\prime \prime}(r)$.
(2) Solve $\Delta u=0$ by finding the general solution to the ordinary differential equation for $u=u(r)$.
4. Solve Laplace's equation $\Delta u=0$ on the disk $r<1$ with the boundary condition $u=1+3 \sin \theta-$ $4 \cos 5 \theta$ at $r=1$.
5. (1) Show that $K(x)=-|x| / 2$ satisfies $-K^{\prime \prime}=\delta$ in \mathbb{R}, where δ is the one-dimensional Dirac delta function at 0 . This means that

$$
\int_{-\infty}^{\infty} K^{\prime}(x) \phi^{\prime}(x) d x=\phi(0)
$$

for any continuously differentiable and compactly supported function $\phi=\phi(x)$.
(2) Construct the Green's function $G=G(x, y)$ on a finite interval (a, b) as

$$
G(x, y)=K(x-y)+g^{x}(y) \quad \forall y \in(a, b)
$$

where g^{x} for each $x \in(a, b)$ is a harmonic function such that $G(x, a)=G(x, b)=0$.
6. (1) Let $v=v(x, y)$ be a harmonic function. Prove that $u(x, y)=v\left(x^{2}-y^{2}, 2 x y\right)$ is also a harmonic function.
(2) Prove that the mapping $(x, y) \mapsto\left(x^{2}-y^{2}, 2 x y\right)$ maps the first quadrant $x>0$ and $y>0$ to the upper half plan $y>0$.
(3) Use the mapping in Part (2) and the Green's function for the upper half plane to construct the Green's function for the first quadrant.
(4) Solve Laplace's equation $\Delta u=0$ in the region $x>0$ and $y>0$ with the boundary conditions $u(0, y)=g(y)$ for $y>0$ and $u(x, 0)=h(x)$ for $x>0$, where g and h are given continuous functions.

