Math 210C: Mathematical Methods in Physical Sciences and Engineering Spring quarter, 2018 Homework Assignment 3

Due Wednesday, April 25, 2018

- 1. For each integer $n \ge 1$, define $u_n, v_n : \mathbb{R}^2 \to \mathbb{R}$ in the polar coordinates by $u_n(r, \theta) = r^n \cos(n\theta)$ and $v_n(r,\theta) = r^n \sin(n\theta)$. Verify that both u_n and v_n are harmonic functions in \mathbb{R}^2 .
- 2. Let $u \in C^2(\mathbb{R}^2)$. Let $\xi = \xi(x, y)$ and $\eta = \eta(x, y)$ be smooth functions that define a bijective map from \mathbb{R}^2 to \mathbb{R}^2 with a smooth inverse $x = x(\xi, \eta)$ and $y = y(\xi, \eta)$. Define $v(\xi, \eta) = u(x, y)$ with $x = x(\xi, \eta)$ and $y = y(\xi, \eta)$ for for any $(\xi, \eta) \in \mathbb{R}^2$.
 - (1) Verify that

$$\Delta u(x,y) = v_{\xi\xi} |\nabla_{(x,y)}\xi|^2 + v_{\eta\eta} |\nabla_{(x,y)}\eta|^2 + 2v_{\xi\eta} \nabla_{(x,y)}\xi \cdot \nabla_{(x,y)}\eta + v_{\xi} \Delta_{(x,y)}\xi + v_{\eta} \Delta_{(x,y)}\eta.$$

(2) Use Part (1) to show that the Laplacian in the polar coordinates (r, θ) is given by

$$\Delta_{(x,y)}u(r,\theta) = u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta}$$

- 3. Let $n \ge 2$ be an integer and $r = |x| = \sqrt{x_1^2 + \ldots x_n^2}$ with $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$. Let $u \in C^2(\mathbb{R})$.

 - (1) Express $\Delta u = \sum_{j=1}^{n} \partial^2 u / \partial x_j^2$ in terms of u'(r) and u''(r). (2) Solve $\Delta u = 0$ by finding the general solution to the ordinary differential equation for u = u(r).
- 4. Solve Laplace's equation $\Delta u = 0$ on the disk r < 1 with the boundary condition $u = 1 + 3\sin\theta$ $4\cos 5\theta$ at r=1.
- (1) Show that K(x) = -|x|/2 satisfies $-K'' = \delta$ in \mathbb{R} , where δ is the one-dimensional Dirac 5. delta function at 0. This means that

$$\int_{-\infty}^{\infty} K'(x)\phi'(x)\,dx = \phi(0)$$

for any continuously differentiable and compactly supported function $\phi = \phi(x)$.

(2) Construct the Green's function G = G(x, y) on a finite interval (a, b) as

$$G(x,y) = K(x-y) + g^{x}(y) \quad \forall y \in (a,b)$$

where g^x for each $x \in (a, b)$ is a harmonic function such that G(x, a) = G(x, b) = 0.

- 6. (1) Let v = v(x,y) be a harmonic function. Prove that $u(x,y) = v(x^2 y^2, 2xy)$ is also a harmonic function.
 - (2) Prove that the mapping $(x, y) \mapsto (x^2 y^2, 2xy)$ maps the first quadrant x > 0 and y > 0to the upper half plan y > 0.
 - (3) Use the mapping in Part (2) and the Green's function for the upper half plane to construct the Green's function for the first quadrant.
 - (4) Solve Laplace's equation $\Delta u = 0$ in the region x > 0 and y > 0 with the boundary conditions u(0,y) = g(y) for y > 0 and u(x,0) = h(x) for x > 0, where g and h are given continuous functions.