Math 210C: Mathematical Methods in Physical Sciences and Engineering Spring quarter, 2018

 Homework Assignment 4

 Homework Assignment 4}

Due Friday, May 4, 2018

1. Let $\alpha>0$ and define $K(r)=(1 / 4 \pi r) e^{-\alpha r}(r>0)$. Verify that

$$
-\Delta K(|x|)+\alpha^{2} K(|x|)=0 \quad \forall x \in \mathbb{R}^{3}, x \neq 0
$$

Optional: Prove that $K(|x|)$ is the fundamental solution to $-\Delta+\alpha$ in \mathbb{R}^{3}, i.e.,

$$
-\Delta K+\alpha^{2} K=\delta \quad \text { in } \mathbb{R}^{3} \quad \text { and } \quad K(\infty)=0
$$

2. Let $\alpha>0$. Let $f: \Omega \rightarrow \mathbb{R}$ and $g: \partial \Omega \rightarrow \mathbb{R}$ be two given functions. Prove the uniqueness of solution to the Robin boundary-value problem of Poisson's equation in a bounded and smooth domain Ω :

$$
\begin{cases}-\Delta u=f & \text { in } \Omega, \\ \partial_{n} u+\alpha u=g & \text { on } \partial \Omega .\end{cases}
$$

3. Let κ be a positive number. Let $f: \Omega \rightarrow \mathbb{R}$ and $g: \partial \Omega \rightarrow \mathbb{R}$ be two given functions. Prove the uniqueness of solution to the boundary-value problem:

$$
\begin{cases}-\Delta u+\kappa^{2} u=f & \text { in } \Omega \\ u=g & \text { on } \partial \Omega\end{cases}
$$

or

$$
\begin{cases}-\Delta u+\kappa^{2} u=f & \text { in } \Omega, \\ \partial_{n} u=g & \text { on } \partial \Omega .\end{cases}
$$

4. Let Ω be a bounded and smooth domain in \mathbb{R}^{d} for some $d \geq 2$. Calculate the Euler-Lagrange equation for the functional

$$
E[u]=\int_{\Omega} \frac{1}{2}\left[|\Delta u|^{2}-\ln \left(1+|\nabla u|^{2}\right)\right] d x .
$$

5. Is the statement of the Mean-Value Theorem for a harmonic function still true if the sphere is replaced by a cube or a disk is replaced by a square?
6. (Optional) Let $f \in C(\mathbb{R} \times[0, \infty))$ and $g \in C(\mathbb{R})$. Show that the boundary-value problem $\Delta u=f$ in $\mathbb{R} \times(0, \infty)$ and $u(\cdot, 0)=g$ on \mathbb{R} can have at most one solution $u \in C(\mathbb{R} \times[0, \infty)) \cap C^{2}(\mathbb{R} \times(0, \infty))$. that satisfies $u(x, y) \rightarrow 0$ as $y \geq 0$ and $x^{2}+y^{2} \rightarrow \infty$.
