Math 210C: Mathematical Methods in Physical Sciences and Engineering Spring quarter, 2018

Homework Assignment 5
 Due Monday, May 14, 2018

1. Let $f \in C([0,1])$ be given. Use the method of separation of variables to find the series expansion of the solution $u=u(x, t)$ to the following initial-boundary-value problem:

$$
\begin{cases}u_{t}=u_{x x}-u & \text { for } 0<x<1, t>0 \\ u(0, t)=u(1, t)=0 & \text { for } t>0 \\ u(x, 0)=f(x) & \text { for } 0<x<1\end{cases}
$$

2. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded and smooth domain. Let $u \in C^{2}(\bar{\Omega})$ be a nonzero (real-valued) function and let $\lambda \in \mathbb{R}$. Suppose $-\Delta u=\lambda u$ in Ω and $u=0$ on $\partial \Omega$. Show that

$$
\lambda=\left(\int_{\Omega}|\nabla u|^{2} d x\right)\left(\int_{\Omega} u^{2} d x\right)^{-1}>0 .
$$

3. Find the Fourier transform for each of the following functions:
(1) $f(x)=(1 / 2) \chi_{[-1,1]}$, where χ_{A} denotes the characteristic function of A (i.e., $\chi_{A}(x)=1$ if $x \in A$ and $\chi_{A}(x)=0$ if $\left.x \notin A\right)$;
(2) (Optional) $f(x)=1 /\left(1+x^{2}\right)(x \in \mathbb{R})$.
4. (1) The Gaussian kernel (or heat kernel) in one space dimension is defined to be

$$
K(x, t)=\frac{1}{\sqrt{4 \pi D t}} e^{-\frac{x^{2}}{4 D t}} \quad(x \in \mathbb{R}, t>0)
$$

where $D>0$ is a constant. Verify that $K_{t}=D K_{x x}$ for all $x \in \mathbb{R}$ and $t>0$.
(2) Define now $K_{n}(x, t)=\prod_{i=1}^{n} K\left(x_{i}, t\right)$ for $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $t>0$. Verify that $u_{t}=D \Delta u$ for all $x \in \mathbb{R}^{n}$ and $t>0$.
5. Use the fundamental solution to the heat equation to find a formula of solution to the following initial-boundary-value problem of the heat equation on half-line:

$$
\begin{cases}u_{t}=D u_{x x} & \text { for } x>0, t>0 \\ u(0, t)=0 & \text { for } t>0 \\ u(x, 0)=\phi(x) & \text { for } x>0\end{cases}
$$

where $D>0$ is a constant and ϕ is a compactly supported continuous function on $[0, \infty)$.
6. Let Ω be a bounded and smooth domain in \mathbb{R}^{d} and denote by n the unit exterior normal to the boundary $\partial \Omega$. Suppose $u=u(x, t)(x \in \bar{\Omega}, t \geq 0)$ is a smooth and bounded function. Suppose also that

$$
\begin{cases}u_{t}=D \Delta u & \text { for } x \in \Omega, t>0 \\ \frac{\partial u}{\partial n}=0 & \text { for } x \in \partial \Omega, t>0 \\ u(x, 0)=\phi(x) & \text { for } x \in \Omega\end{cases}
$$

for some $\phi \in C(\bar{\Omega})$. Show that

$$
\int_{\Omega} u(x, t) d x=\int_{\Omega} \phi(x) d x \quad \forall t>0 .
$$

