Math 210C: Mathematical Methods in Physical Sciences and Engineering Spring quarter, 2018

Homework Assignment 6

Due Wednesday, May 30, 2018

1. The Fourier transform for any $u \in L^{1}\left(\mathbb{R}^{n}\right)$ is defined by

$$
\hat{u}(\xi)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} u(x) e^{-i x \cdot \xi} d x \quad \forall \xi \in \mathbb{R}^{n}
$$

Prove the following:
(1) For any $h \in \mathbb{R}^{n}, \lambda>0$, and $u \in L^{1}\left(\mathbb{R}^{n}\right), \widehat{\tau_{h} u}(\xi)=e^{-i h \cdot \xi} \hat{u}(\xi)$ and $\widehat{\delta_{\lambda} u}(\xi)=\lambda^{n} \hat{u}(\lambda \xi)$ $\left(\xi \in \mathbb{R}^{n}\right)$, where $\tau_{h} u(x)=u(x-h)$ and $\delta_{\lambda} u(x)=u(x / \lambda)$.
(2) For any $u \in C_{c}^{2}\left(\mathbb{R}^{n}\right), \widehat{\Delta u}(\xi)=-|\xi|^{2} \hat{u}(\xi)\left(\xi \in \mathbb{R}^{n}\right)$.
(3) If $u, v \in C_{c}\left(\mathbb{R}^{n}\right)$, then $\widehat{u * v}=(2 \pi)^{n / 2} \hat{u} \hat{v}$.
2. Let $D>0$ and $\alpha>0$ be two given constants, and consider the diffusion equation

$$
u_{t}=D u_{x x}+\alpha u \quad(x \in R, t>0) .
$$

Let $k>0$ and define $u_{k}(x, t)=e^{\omega t} \sin (k x)(x \in \mathbb{R}, t>0)$, where ω is a constant to be determined.
(1) Find the formula for $\omega=\omega(k, D, \alpha)$ so that $u_{k}(x, t)$ solves the above diffusion equation.
(2) With that $\omega=\omega(k, D, \alpha)$, find all $k>0$ such that $u_{k}(x, t)$ are bounded as $t \rightarrow \infty$.
3. Let $f \in C\left(\mathbb{R}^{n}\right)$ be bounded. Let $u=u(x, t)$ be the solution to the heat equation $u_{t}=\Delta u$ $\left(x \in \mathbb{R}^{n}, t>0\right)$ with the initial condition $u(x, 0)=f(x)\left(x \in \mathbb{R}^{n}\right)$, given by

$$
u(x, t)=\int_{\mathbb{R}^{n}} K(x-y, t) f(y) d y \quad \forall t>0
$$

where K is the heat kernel.
(1) Show that $|u(x, t)| \leq \sup _{y \in \mathbb{R}^{n}}|f(y)|$ for all $x \in \mathbb{R}^{n}$ and $t \geq 0$.
(2) Assume in addition $f \in L^{1}\left(\mathbb{R}^{n}\right)$. Show that $\lim _{t \rightarrow \infty} u(x, t)=0$ for all $x \in \mathbb{R}^{n}$.
4. Let $\Omega \subset \mathbb{R}^{n}$ be a smooth and bounded domain, $D>0$ and $T>0$ constants, $f \in C(\bar{\Omega} \times[0, T])$, $g \in C(\partial \Omega \times[0, T])$, and $\phi \in C(\bar{\Omega})$. Use the energy method to prove the uniqueness of solution to the initial-boundary-value problem: $u_{t}-D \Delta u=f$ in $\Omega \times(0, T], u=g$ on $\partial \Omega \times(0, T]$, and $u=\phi$ on $\Omega \times\{0\}$.
5. (The Markov property of solutions to diffusion equations.) Let $u=u(x, t)$ solve the diffusion equation $u_{t}=D \Delta u$ in $\Omega \times(0, \infty)$, with the zero Dirichlet boundary condition $u(x, t)=0$ $(x \in \partial \Omega, t>0)$, where $D>0$ is the diffusion constant and Ω is a bounded and smooth domain in \mathbb{R}^{n}. Let $t_{1}>0$ and let $u_{1}=u_{1}(x, t)$ solve the diffusion equation $u_{1 t}=D \Delta u_{1}$ in $\Omega \times(0, \infty)$, with the zero Dirichlet boundary condition $u_{1}(x, t)=0(x \in \partial \Omega, t>0)$ and the initial condition $u_{1}(x, 0)=u\left(x, t_{1}\right)(x \in \Omega)$. Prove that $u\left(x, t_{1}+t_{2}\right)=u_{1}\left(x, t_{2}\right)$ for any $x \in \Omega$ and any $t_{2}>0$.
6. Let $D>0, \kappa>0, Y(x, t)=e^{-\kappa t} K(x, t)$, and $K(x, t)=(4 \pi D t)^{-n / 2} e^{-\frac{|x|^{2}}{4 D t}}\left(x \in \mathbb{R}^{n}, t>0\right)$.
(1) Verify that $Y_{t}-D \Delta Y+\kappa Y=0$ in $\mathbb{R}^{n} \times(0, \infty)$.
(2) Let $f \in C\left(\mathbb{R}^{n}\right)$ be bounded. Use the kernel $Y(x, t)$ to find a formula of the solution to the initial-value problem

$$
\left\{\begin{array}{l}
u_{t}-\Delta u+\kappa u=0 \quad \text { in } \mathbb{R}^{n} \times(0, \infty), \\
u=f \quad \text { on } \mathbb{R}^{n} \times\{0\}
\end{array}\right.
$$

