Math 210C: Mathematical Methods in Physical Sciences and Engineering Spring quarter, 2018

Homework Assignment 6 Due Wednesday, May 30, 2018

1. The Fourier transform for any $u \in L^1(\mathbb{R}^n)$ is defined by

$$\hat{u}(\xi) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} u(x) e^{-ix \cdot \xi} dx \qquad \forall \xi \in \mathbb{R}^n.$$

Prove the following:

- (1) For any $h \in \mathbb{R}^n$, $\lambda > 0$, and $u \in L^1(\mathbb{R}^n)$, $\widehat{\tau_h u}(\xi) = e^{-ih\cdot\xi}\hat{u}(\xi)$ and $\widehat{\delta_\lambda u}(\xi) = \lambda^n \hat{u}(\lambda\xi)$ $(\xi \in \mathbb{R}^n)$, where $\tau_h u(x) = u(x-h)$ and $\delta_\lambda u(x) = u(x/\lambda)$.
- (2) For any $u \in C_c^2(\mathbb{R}^n)$, $\widehat{\Delta u}(\xi) = -|\xi|^2 \hat{u}(\xi)$ $(\xi \in \mathbb{R}^n)$. (3) If $u, v \in C_c(\mathbb{R}^n)$, then $\widehat{u * v} = (2\pi)^{n/2} \hat{u} \hat{v}$.
- 2. Let D > 0 and $\alpha > 0$ be two given constants, and consider the diffusion equation

$$u_t = Du_{xx} + \alpha u \qquad (x \in R, t > 0).$$

Let k > 0 and define $u_k(x,t) = e^{\omega t} \sin(kx)$ $(x \in \mathbb{R}, t > 0)$, where ω is a constant to be determined.

- (1) Find the formula for $\omega = \omega(k, D, \alpha)$ so that $u_k(x, t)$ solves the above diffusion equation.
- (2) With that $\omega = \omega(k, D, \alpha)$, find all k > 0 such that $u_k(x, t)$ are bounded as $t \to \infty$.
- 3. Let $f \in C(\mathbb{R}^n)$ be bounded. Let u = u(x,t) be the solution to the heat equation $u_t = \Delta u$ $(x \in \mathbb{R}^n, t > 0)$ with the initial condition u(x, 0) = f(x) $(x \in \mathbb{R}^n)$, given by

$$u(x,t) = \int_{\mathbb{R}^n} K(x-y,t) f(y) \, dy \qquad \forall t > 0,$$

where K is the heat kernel.

- (1) Show that $|u(x,t)| \leq \sup_{y \in \mathbb{R}^n} |f(y)|$ for all $x \in \mathbb{R}^n$ and $t \geq 0$.
- (2) Assume in addition $f \in L^1(\mathbb{R}^n)$. Show that $\lim_{t\to\infty} u(x,t) = 0$ for all $x \in \mathbb{R}^n$.
- 4. Let $\Omega \subset \mathbb{R}^n$ be a smooth and bounded domain, D > 0 and T > 0 constants, $f \in C(\overline{\Omega} \times [0,T])$, $g \in C(\partial \Omega \times [0,T])$, and $\phi \in C(\overline{\Omega})$. Use the energy method to prove the uniqueness of solution to the initial-boundary-value problem: $u_t - D\Delta u = f$ in $\Omega \times (0,T]$, u = g on $\partial \Omega \times (0,T]$, and $u = \phi$ on $\Omega \times \{0\}$.
- 5. (The Markov property of solutions to diffusion equations.) Let u = u(x,t) solve the diffusion equation $u_t = D\Delta u$ in $\Omega \times (0, \infty)$, with the zero Dirichlet boundary condition u(x, t) = 0 $(x \in \partial \Omega, t > 0)$, where D > 0 is the diffusion constant and Ω is a bounded and smooth domain in \mathbb{R}^n . Let $t_1 > 0$ and let $u_1 = u_1(x, t)$ solve the diffusion equation $u_{1t} = D\Delta u_1$ in $\Omega \times (0, \infty)$, with the zero Dirichlet boundary condition $u_1(x,t) = 0$ ($x \in \partial\Omega, t > 0$) and the initial condition $u_1(x,0) = u(x,t_1)$ ($x \in \Omega$). Prove that $u(x,t_1+t_2) = u_1(x,t_2)$ for any $x \in \Omega$ and any $t_2 > 0$.

6. Let
$$D > 0$$
, $\kappa > 0$, $Y(x,t) = e^{-\kappa t} K(x,t)$, and $K(x,t) = (4\pi Dt)^{-n/2} e^{-\frac{|x|^2}{4Dt}}$ $(x \in \mathbb{R}^n, t > 0)$.

- (1) Verify that $Y_t D\Delta Y + \kappa Y = 0$ in $\mathbb{R}^n \times (0, \infty)$.
- (2) Let $f \in C(\mathbb{R}^n)$ be bounded. Use the kernel Y(x,t) to find a formula of the solution to the initial-value problem

$$\begin{cases} u_t - \Delta u + \kappa u = 0 & \text{in } \mathbb{R}^n \times (0, \infty), \\ u = f & \text{on } \mathbb{R}^n \times \{0\}. \end{cases}$$