Math 210C: Mathematical Methods in Physical Sciences and Engineering Spring quarter, 2018

 Homework Assignment 7

 Homework Assignment 7
 Due Friday, June 8, 2018

1. Use Fourier series to solve the initial-value problem for the Klein-Gordon equation

$$
\begin{cases}u_{t t}-c^{2} u_{x x}+m^{2} u=0 & \text { for } 0<x<\pi, t>0 \\ u(0, t)=0 \quad \text { and } \quad u(\pi, t)=0 & \text { for } t>0 \\ u(x, 0)=g(x) \quad \text { and } \quad u_{t}(x, 0)=h(x) & \text { for } x>0\end{cases}
$$

where c and m are positive numbers, and g and h are continuous functions on $[0, \pi]$.
2. Find the solution to the initial-value problem of wave-equation

$$
\begin{cases}u_{t t}-u_{x x}=0 & \text { for } x \in \mathbb{R}, t>0 \\ u(x, 0)=\ln \left(1+x^{2}\right) \quad \text { and } \quad u_{t}(x, 0)=1-x & \text { for } x \in \mathbb{R}\end{cases}
$$

3. Solve the initial-value problem

$$
\begin{cases}u_{x x}-3 u_{x t}-4 u_{t t}=0 & \text { for } x, t \in \mathbb{R} \\ u(x, 0)=x^{2} \quad \text { and } \quad u_{t}(x, 0)=e^{x} & \text { for } x \in \mathbb{R}\end{cases}
$$

4. Solve $u_{t t}=u_{x x}+x t(-\infty<x<\infty, t>0)$ with $u(x, 0)=0$ and $u_{t}(x, 0)=1+x(-\infty<x<\infty)$.
5. Solve the initial-value problem of wave equation

$$
\begin{cases}u_{t t}-\Delta u=0 & \text { for } x, y, z \in \mathbb{R}, t>0 \\ u(x, y, z, 0)=x^{2}+y^{2} \quad \text { and } \quad u_{t}(x, y, z, 0)=0 & \text { for } x, y, z \in \mathbb{R}\end{cases}
$$

6. The small wave motion $u=u(x, t)$ of a flexible beam with clamped ends at $x=0$ and $x=1$ is the solution to the following initial-boundary-value problem:

$$
\begin{cases}u_{t t}+\gamma^{2} u_{x x x x}=0 & \text { for } 0<x<1, t>0, \\ u(0, t)=u(1, t)=0 \quad \text { and } \quad u_{x}(0, t)=u_{x}(1, t)=0 & \text { for } t>0, \\ u(x, 0)=g(x) \quad \text { and } \quad u_{t}(x, 0)=h(x) & \text { for } 0<x<1,\end{cases}
$$

where g and h are smooth and bounded functions on $[0,1]$. Define the energy

$$
E(t)=\frac{1}{2} \int_{0}^{1}\left(u_{t}^{2}+\gamma^{2} u_{x x}^{2}\right) d x
$$

Prove that $E(t)$ is a constant for $t \geq 0$, i.e., the energy is conserved.

