Sampling Random Variables

Bo Li, Math, UCSD, Spring 2019

Let \((\Omega, \mathcal{A}, \mathbb{P})\) be a probability space. Let \(X: \mathbb{R} \to \mathbb{R}\) be a random variable (RV), with probability density function (PDF) \(f_X: \mathbb{R} \to [0, \infty)\). Sampling \(X\) with the given density \(f_X\) means to produce \(X_1, X_2, \ldots\) i.i.d. (independent identically distributed) RVs with the common density/distribution \(f_X\).

Often, a starting point is to generate \(U \sim U[0,1]\) i.e., RV \(U\) that is uniformly distributed on \([0,1]\). This is a random number \(U \sim U[0,1]\). Then, using some method to generate/produce the needed RVs \(X_1, X_2, \ldots\) i.i.d. with the given/target density \(f_X\). \(U \sim U[0,1] \Rightarrow X \sim f_X\).

Notation. \(X \sim f\) means \(X\) is a RV distributed according to \(f\), or with the PDF \(f\). E.g., \(U \sim U[0,1]\), \(U\) is uniformly distributed on \([0,1]\). \(Z \sim N(0,1)\): \(Z\) has the standard normal or Gaussian distribution.

If \(F = F_X(x)\) is the distribution (or cumulative distribution function) of a RV, then \(X \sim F\) means the RV \(X\) has the CDF \(F\), or \(X\) is \(F\)-distributed.
Example 1: Sample a RV $X \sim \text{Bernoulli}(\frac{1}{3})$

Define $h : [0, 1] \rightarrow \{0, 1\}$ by

$$h(u) = \begin{cases}
0 & \text{if } 0 \leq u \leq \frac{1}{3} \\
1 & \text{if } \frac{2}{3} < u \leq 1
\end{cases}$$

If $U(1) \sim \text{Uniform}[0, 1]$ then $h(U) \sim \text{Bernoulli}(\frac{1}{3})$.

Proof. \(\forall w \in [0, 1) \)

$$P(U(w) \leq \frac{1}{3}) = \frac{1}{3}$$

So we can define

$$h(U(w)) = \begin{cases}
0 & \text{if } U(w) \in [0, \frac{1}{3}], \\
1 & \text{if } U(w) \in (\frac{2}{3}, 1].
\end{cases}$$

So

$$P(h(U) = 0) = P(0 \leq U < \frac{2}{3}) = F_U(\frac{2}{3}) - F_U(0) = \frac{2}{3}$$

$$P(h(U) = 1) = P(\frac{2}{3} < U \leq 1) = F_U(1) - F_U(\frac{2}{3}) = 1 - \frac{2}{3} = \frac{1}{3}$$

So

$$P(h(U) = 0) = 0$$

Hence, $h(U) \sim \text{Bernoulli}(\frac{1}{3})$.

Example 2: Sample $X \sim \text{Exp}(7)$. Recall the PDF for $	ext{Exp}(7)$ [exponential distribution with $\lambda = 7$] is given by

$$f(x) = \begin{cases}
0 & \text{if } x < 0, \\
7e^{-7x} & \text{if } x \geq 0.
\end{cases}$$

Define $h : [0, 1] \rightarrow [0, \infty)$ by $h(u) = -\frac{1}{7} \log u$ (log: natural logarithm).

Let $U(1) \sim \text{Uniform}[0, 1]$. We show that $h(U) \sim \text{Exp}(7)$.

We compute the PDF (prob. distribution function) of the RV $Y = h(U)$.

Since $h(U) \equiv 0 \forall u \in [0, 1]$, we have

$$P(h(U) \leq 0) = 0$$

i.e. $F_{h(U)}(0) = 0$.

Let $x > 0$ we have

$$F_{h(U)}(x) = F_{h(U)}(0) = 0$$

So $F_{h(U)}(x) = 0$ if $x \leq 0$.

Note: We should define

$$x = \begin{cases}
h(U) & \text{if } U \in [0, 1), \\
0 & \text{if } U \not\in [0, 1].
\end{cases}$$

So $F_x(x) = 0$ if $x \leq 0$.

<Refer to the image>
Let \(x > 0 \). We have
\[
P(h(U) \leq x) = P \left(\log(U) \geq -7x \right)
= P(U \geq e^{-7x})
= P(U \geq e^{-7x}) + P(U < e^{-7x}) - P(U < e^{-7x})
= 1 - P(U < e^{-7x})
= 1 - F_U(e^{-7x})
= 1 - e^{-7x} \text{ (since } e^{-7x} \text{ is strictly increasing)}
\]

i.e.,
\[
F_U(U)(x) = \begin{cases}
1 - e^{-7x} & \text{if } x \leq 0, \\
-x^{-7} & \text{if } x > 0.
\end{cases}
\]
Together
\[
F_U(U)(x) = \begin{cases}
0 & \text{if } x \leq 0, \\
-x^{-7} & \text{if } x > 0.
\end{cases}
\]

The Inversion Method

Lemma Let \(F : \mathbb{R} \rightarrow [0,1] \) be the distribution of an RV \(X \rightarrow \mathbb{R} \). If \(U \sim U(0,1) \), then
\[
X = F^{-1}(U) \sim F.
\]

Note: We should really define
\[
X = \begin{cases}
F^{-1}(U) & \text{if } F \text{ strictly increasing}, \\
\text{constant} & \text{otherwise}.
\end{cases}
\]

Here \(F^{-1} \) is the generalized inverse of \(F \), defined as
\[
F^{-1}(u) = \inf \{ z \in \mathbb{R} : F(z) \geq u \} \text{ for } 0 \leq u \leq 1.
\]

If \(F \) is strictly increasing, then this is the same as the inverse function of \(F \).

Prove this fact. You need the properties of the CDF \(F \).

Proof of Lemma Let \(z \in \mathbb{R} \).
\[
P(X = \infty) = P(U < 0)
= P(U < 0) \quad \text{Use the right-continuity of } F
= P(U > 1)
= P(U > 1) \quad \text{by definition of } F
= 0.
\]

\[
P(U < 0) = P(F^{-1}(U) \leq z) \quad \text{by definition of } F^{-1}
\]

Since \(F(z) \in [0,1] \).

Proof of (x) Since \(P(U < 0) = 0 \), \(P(U > 1) = 0 \). We consider only \(0 < U < 1 \) and show
\[
F^{-1}(U) \leq z \iff U \leq F(z)
\]
for any \(z \in \mathbb{R} \). This follows from the def. \(F^{-1} \).
Fix $z \in \mathbb{R}$ and assume $F^{-1}(U) \leq z$. By the def. of $F^{-1}(U)$, let $z_n \downarrow z$ s.t. $F^{-1}(U) = \lim_{n \to \infty} z_n$, and $F(z_n) \geq U$. Note that z_n is bounded below, for otherwise $z_n \to -\infty$ and $F(z_n) \to 0$ contradiction $F(z_n) \geq U > 0$ ($n=1,2,\ldots$). So, $z_n \downarrow z'$ for some $z' \in \mathbb{R}$. But all $z_n \leq F^{-1}(U)$. So, $z \leq F^{-1}(U) \leq z$. Moreover, the right-continuity implies $F(z') = \lim_{n \to \infty} F(z_n) \geq U$. Hence, the monotonicity of F implies that $U \leq F(z') \leq F(z)$.

Example Sample a RV that is $\text{Exp}(\lambda)$ distributed for some $\lambda > 0$. The CDF for $\text{Exp}(\lambda)$ is $F(x) = \begin{cases} 0 & \text{if } x < 0, \\ 1 - e^{-\lambda x} & \text{if } x \geq 0. \end{cases}$ Let $U \sim U(0,1)$. Since $P(U \in (0,1)) = 0$, let's just assume $U \in (0,1)$. Let $X = F^{-1}(U)$.

$$x = F^{-1}(U), \quad U \in (0,1) \implies F(x) = U \in (0,1).$$

$$1 - e^{-\lambda x} = U \implies x = -\frac{1}{\lambda} \log(1-U).$$

So, $X = -\frac{1}{\lambda} \log(1-U)$. Check that $F_X = F$.

So $X \sim \text{Exp}(\lambda)$.

Example Sample a RV with density $f(r) = \begin{cases} \frac{1}{\sqrt{2\pi}} e^{-\frac{r^2}{2}} & \text{if } r \geq 0, \\ 0 & \text{if } r < 0. \end{cases}$ The distribution is $F(r) = \int_0^r f(u) du = 1 - e^{-\frac{r^2}{2}}$ if $r \geq 0$, and $F(r) = 0$ if $r < 0$. So, we have $F(r) = U \in (0,1)$.

$$\Rightarrow r = \sqrt{-2 \log(1-U)}.$$

So, if $U \sim U(0,1)$. Then $R = \sqrt{-2 \log(1-U)}$ is a RV with the density f.

[See next page for the discrete inversion method.]

Numerical Approximation — if an explicit formula of F^{-1} is not available.

Sample a RV with CDF F.

Step 1 Find $a,b \in \mathbb{R}$, $a < b$, and set $x_n = 2^k < x_1 < \ldots < x_n = b$.

So that $F(x_i) \leq 1 - F(b) < x_i - F(x_{i+1}) < F(x_{i+1}) - F(x_i) < 1$ for all i.
Step 2. Generate $U \sim U[0,1].$

Step 3. Find i s.t. $F(2i) \leq U \leq F(2i+1)

(Need to use some search algorithm)

Step 4. Define

\[
X = 2i + \frac{U - F(2i)}{F(2i+1) - F(2i)} \cdot F(2i+1) - F(2i).
\]

Then, approximately, X has the distribution function $F.$

Why? By the inversion method, $F(X) = U.$ But, we don't have a formula for $F^{-1}.$ So, we solve $F(2i) = U$ numerically to find $z,$ then use this z as our $X.$

\[
U = F(2i + (z-i)(2-2i)) \quad \Rightarrow \quad z = 2i + \frac{U - F(2i)}{F'(2i)}.
\]

But $F'(2i) = \frac{F(2i+1) - F(2i)}{2i+1 - 2i}.$

Hence

\[
z = 2i + \frac{U - F(2i)}{F(2i+1) - F(2i)}.
\]

Replace z by X and i by $x.$
The Discrete Inversion Method (Or the Inversion Method for Discrete RVs)

Let \(X : \mathbb{N} \rightarrow \mathbb{R} \) be a discrete RV taking values \(x_1 < x_2 < \ldots \) with probabilities \(p_1, p_2, \ldots \), where \(p_k = P(X = x_k) > 0 \) and \(\sum_{k=1}^{\infty} p_k = 1 \).

The PMF (probability mass function), or the discrete distribution (function) \(F = F_X : \mathbb{R} \rightarrow [0,1] \) is a step function:

\[
F(x) = \begin{cases}
0 & \text{if } x < x_1 \\
p_1 & \text{if } x_1 \leq x < x_2 \\
p_1 + p_2 & \text{if } x_2 \leq x < x_3 \\
p_1 + p_2 + \ldots + p_k & \text{if } x_k \leq x < x_{k+1} \\
1 & \text{if } x \geq x_k
\end{cases}
\]

If \(U \sim U[0,1] \), then, for each \(x_k \), we find the smallest integer \(k \geq 1 \) such that \(F(x_k) > U \), and return \(X = x_k \).

The \(X \) is a discrete RV with \(X \sim F \).

This algorithm involves searching, which is in general \(O(M) \) complexity if it is a \(M \)-state RV. With a binary search, it is \(O(\log M) \).
The Transformation Method

More general than the inversion method.

Note: \(x = \alpha(x) \)

may not itself be a distribution.

Let \(X: \mathbb{R} \to \mathbb{R} \) be a RV with the distribution \(F_X: \mathbb{R} \to [0, 1] \) and the density \(f_X: \mathbb{R} \to [0, \infty) \).

Let \(\alpha: \mathbb{R} \to \mathbb{R} \) be a \(C^1 \) function. Assume \(\alpha'(x) > 0 \) \(\forall x \in \mathbb{R} \), i.e., \(\alpha \) is increasing.

Define \(Y = \alpha(X) \). Then \(Y: \mathbb{R} \to \mathbb{R} \) is also a RV. We would like to find the distribution and/or density for \(Y \).

Let \(y = \alpha(x) \) (\(x \in \mathbb{R} \)). Then

\[
F_Y(y) = P(Y \leq y) = P(\alpha(X) \leq \alpha(x)) = P(X \leq x) = F_X(x)
\]

\[
F_Y'(y) = F_Y'(y) = F_X'(x)
\]

So,

\[
\frac{d}{dx}[F_Y(y(x))] = F_X'(x) = f_X(x)
\]

\[
F_Y'(y) \cdot y'(x) = f_X(x)
\]

\[
F_Y(y) \frac{dx}{dy} = f_X(x)
\]

\[
f_Y(y) = f_X(x) \left(\frac{dx}{dy} \right)^{-1}, \quad y = x = \alpha'(y)
\]

Let \(\beta \in C^1(\mathbb{R}) \) be \(\beta \) new \(\beta(x_1) < 0 \) \(\forall x_1 \in \mathbb{R} \).

\[\text{strictly} \]

i.e., \[\beta'(x_1) < 0 \] \(\forall x_1 \in \mathbb{R} \).
Consider now \(Y = \beta(X) \).

What is \(f_Y \)?

Let \(y = \beta(x) \). \(F_Y(y) = P(Y \leq y) = P(\beta(X) \leq y) \)

\[= P(X \geq x) = 1 - P(X < x) \]

\[= 1 - F_X(x) \]

\[\frac{d}{dx}: \quad f_Y(y) \frac{d\beta}{dx} = -f_X(x) \]

\[f_Y(y) = f_X(x) \left| \frac{d\beta}{dx} \right|^{-1}, \quad y = \beta^{-1}(x) \]

For both cases \(|f_X(x)\,dx| = |f_Y(y)\,dy| \).

Example \(X \sim N(0,1) \) \(f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \)

Let \(d(x) = 0x + \mu \), for some \(\sigma > 0 \) and \(\mu \in \mathbb{R} \)

Let \(Y = d(X) \). \(f_Y(y) = f_X(x) \left| \frac{dy}{dx} \right|^{-1} = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} \cdot \frac{1}{\sigma} \cdot y = \beta(x) \)

But \(y = d(x) = 0x + \mu \). So \(x = \frac{y - \mu}{\sigma} \). Hence,

\[f_Y(y) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(y - \mu)^2}{2\sigma^2}} \]

And, \(Y \sim N(\mu, \sigma^2) \).

Example \(X \sim U[0,1] \) \(d(x) = -\log x, \quad x \in (0,1] \)

Let \(Y = d(X) = -\log X \). For \(y = d(x), \ x \in (0,1] \)

\[f_Y(y) = f_X(x) \left| \frac{dx}{dy} \right|^{-1} = \left| -\frac{1}{x} f_X(x) \right| = x f_X(x) = xf_X(x) \]
If \(x \in (0, 1) \) then \(y = x \log x \in (0, \infty) \)

Also, \(X \sim U[0,1] \). So \(F_X(x) = 1 \) for \(x \in (0, 1) \)

Hence \(f_Y(y) = y = e^{-y} \) for \(y \in (0, \infty) \)

Note that \(P(x \leq 0) = F_X(0) = 0 \)

\(P(x \geq 1) = 0 \) (since \(F_X(1) = 1 = 0 \))

So, on the subset \(\{ X \leq 0 \} \in \sqrt{y} \), we can define \(Y = 0 \). So.

\[
Y = \begin{cases}
0 & \text{on } \{ X \leq 0 \} \\
-\log X & \text{on } \{ X > 0 \} \end{cases}
\]

Thus, \(f_Y(y) = P(Y \leq y) = 0 \) if \(y \leq 0 \).

For \(y > 0 \), \(f_Y(y) = \frac{d}{dy} f_Y(y) = e^{-y} \)

Hence, \(F_Y(y) = \int_{-\infty}^{y} f_Y(u) \, du
= \int_{0}^{y} e^{-u} \, du = 1 - e^{-y} \)

Summary. \(F_Y(y) = \begin{cases}
0 & \text{if } y < 0 \\
1 - e^{-y} & \text{if } y \geq 0 \end{cases} \)

This is the exponential distribution with \(\lambda = 1 \).

In what follows, if \(U \sim U[0,1] \), i.e., \(U \sim U \mathbb{R} \)

is a RV \(U[0,1] \)-distributed. Then we can assume \(0 \leq U \leq 1 \). Since \(P(U \in [0,1]) = 1 \).

In computer, a RND (a random number)
generated in \([0,1] \) is always in \([0,1] \).
The transformation method for sampling multi-variate (multiple RVs).

Let $X_1, \ldots, X_n : \mathcal{X} \to \mathbb{R}$ be n RVs. Then, $X = (X_1, \ldots, X_n) : \mathcal{X} \to \mathbb{R}^n$ is a vector-valued RV.

The joint distribution function is $F_X : \mathbb{R}^n \to [0,1]$.

$$F_X(x) = P \left(\bigcap_{i=1}^{n} (X_i \leq x_i) \right) \quad \forall x = (x_1, \ldots, x_n) \in \mathbb{R}^n$$

The joint density (assumed to exist) is denoted

$$f_X(x) = f_{X_1, \ldots, X_n} (x_1, \ldots, x_n) : \mathbb{R}^n \to \mathbb{R}_+$$

It is related to F_X by

$$F_X(x) = \int_{-\infty}^{x_1} \ldots \int_{-\infty}^{x_n} f(u_1, \ldots, u_n) \, du_1 \ldots du_n$$

and invertible

Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a C-map with the Jacobian for T^{-1}: \text{Range}(T) \to \mathbb{R}^n$

$$J(y) = \det \left(\frac{\partial x_i}{\partial y_j} \right)$$

non-singular at any $y \in \text{Range}(T)$, where

$T(x_1, \ldots, x_n) = (y_1, \ldots, y_n)$,

$(X_1, \ldots, X_n) = T^{-1}(y_1, \ldots, y_n)$,

$x_i = x_i(y_1, \ldots, y_n)$ (i = 1, \ldots, n).

Define $Y = T(X_1, \ldots, X_n) : \mathcal{X} \to \mathbb{R}^n$. What is the joint density for Y?
Theorem. Under the above assumptions, we have for $Y = T(X_1, \ldots, X_n) = (Y_1, \ldots, Y_n)$:

$$f_Y(y) = \begin{cases} f_X(T^{-1}(y)) \left| \frac{\partial T}{\partial y} \right| & \text{if } y \in \text{Range}(T), \\ 0 & \text{otherwise}. \end{cases}$$

PF. Assume Range$(T) = \mathbb{R}^n$. Write $x = (x_1, \ldots, x_n)$, $y = (y_1, \ldots, y_n)$. $\forall B \subseteq \mathbb{R}^n$ a Borel set. [It is enough to assume B is a box, $B = \prod_{i=1}^n [a_i, b_i]$.]

We have

$$P(X \in B) = \int_{T^{-1}(B)} f_X(x) \, dx = \int_{T(B)} f_X(T(y)) \left| \frac{\partial T}{\partial y} \right| \, dy$$

Since $Y = T(X)$, $P(Y \in T(B)) = \int_{T(B)} f_Y(y) \, dy$

Hence $f_Y(y) = f_X(T^{-1}(y)) \left| \frac{\partial T}{\partial y} \right|$. \[□ \]

The result is $f_Y(y) \, dy = f_X(x) \, dx. \quad \frac{dx}{dy} = \left| \frac{\partial T}{\partial y} \right|$

The Box-Muller Method for Sampling Two Independent Gaussian RVs

and Standard Indep.

Let $X, Y : \mathbb{R} \to \mathbb{R}$ be two standard Gaussian variables.

1. Independent: $f_{X,Y}(x,y) = f_X(x) f_Y(y)$
2. $f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$, $f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}$

\[\text{i.e. } X \sim N(0,1), ~ Y \sim N(0,1) \]

We would like to sample X, Y by generating $z, \eta \sim U([0,1])$ and use the transformation method.
We implement this using two steps.

Step 1. Change variables $\mathbf{(x, y)}$ to $\mathbf{(r, \theta)}$

\[
\begin{align*}
x &= r \cos \theta & x &= R \cos \theta \\
y &= r \sin \theta & y &= R \sin \theta \\
\end{align*}
\]

Generate RVs R and θ that correspondingly to X, Y.

Find f_R, f_θ.

Step 2 Generate $R, \theta \sim U[0, 1]$. And then using the transformation method again to generate R and θ or the inversion method.

Let's begin with

\[
\int f_{x, y}(x, y) \, dx \, dy = f_{R, \theta}(r, \theta) \, dr \, d\theta.
\]

Independence:

\[
\int f_x(x) f_y(y) \, dx \, dy = f_R(r) f_\theta(\theta) \, dr \, d\theta.
\]

But, the left-hand side is

\[
\frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} \, dx \, dy
\]

\[
x = r \cos \theta = \frac{1}{\sqrt{2\pi}} e^{-\frac{r^2}{2}} (x^2 + y^2) \, dx \, dy
\]

\[
y = r \sin \theta = \frac{1}{\sqrt{2\pi}} e^{-\frac{r^2}{2}} r \, dx \, dy
\]

Hence, we choose

\[
\begin{align*}
f_R(r) &= r e^{-\frac{r^2}{2}} \quad (r \geq 0) \\
\frac{1}{2\pi} \quad &\text{so that} \quad x = R \cos \theta \\
\frac{1}{2\pi} \quad &\text{so that} \quad y = R \sin \theta \\
\end{align*}
\]

We can define $f_R(r) = 0$ if $r < 0$ and $f_\theta(\theta) = 0$ if $\theta \notin [0, 2\pi)$.

Now, (step 2) we generate R, θ with the densities f_R and f_θ, respectively, by the inversion method.
By the second example on page 4 of this set of notes, we have
\[R = \sqrt{-2 \log(1-\xi)} \quad \text{if } \xi \sim U[0,1] \]

For sampling \(\Theta \) note first from \(f_\Theta(\theta) = \frac{1}{2\pi} \) only for \(\theta \in (0, 2\pi) \), we have
\[F_\Theta(\theta) = \left\{ \begin{array}{ll}
0 & \text{if } \theta \leq 0 \\
\frac{\theta}{2\pi} & \text{if } 0 < \theta \leq 2\pi \\
1 & \text{if } \theta > 2\pi.
\end{array} \right. \]

Let \(\eta \sim U[0,1] \).

Solve: \(F_\Theta(\theta) = \frac{\theta}{2\pi} \text{ in } 0 < \theta < 2\pi \).

Hence, \(\Theta = 2\pi \eta \), \(\theta = 2\pi \eta \in (0, 2\pi) \)

Now, we have the Box-Muller method
\[X = \sqrt{-2 \log(1-\xi)} \cos(2\pi \eta) \quad \xi, \eta \sim U[0,1] \]
\[Y = \sqrt{-2 \log(1-\xi)} \sin(2\pi \eta) \quad \text{independent} \]

Let us verify that \(X, Y \sim N(0,1) \), independent.

Since \(\xi, \eta \sim U[0,1] \) independent,
\[R = \sqrt{-2 \log(1-\xi)} \]
\[\Theta = 2\pi \eta \]
are independent RVs. So, \(f_{X,Y} = f_X \cdot f_Y \)

\[F_\Theta(\theta) = \frac{\theta}{2\pi} \quad \text{if } 0 \leq \theta \leq 2\pi \\
0 \quad \text{elsewhere if } \theta > 2\pi. \]

So, \(f_{\Theta}(\theta) = \left\{ \begin{array}{ll}
\frac{1}{2\pi} & \text{if } \theta \in [0,2\pi] \\
0 & \text{elsewhere.}
\end{array} \right. \)
Similarly,
\[F_R(r) = P(R \leq r) = P(\xi \geq e^{-\frac{r^2}{2}}) \]
\[= 1 - P(\xi < e^{-\frac{r^2}{2}}) \]
\[= 1 - F_\xi(e^{-\frac{r^2}{2}}) \]
\[= 1 - e^{-\frac{r^2}{2}} \quad \text{since } \xi \sim \mathcal{N}(0,1) \]

\[F_R(r) = P(R \leq r) = 0. \]

So,
\[f_R(r) = \begin{cases} 0 & \text{if } r < 0 \\ F_R'(r) & \text{if } r \geq 0 \end{cases} = \begin{cases} 0 & \text{if } r < 0 \\ re^{-\frac{r^2}{2}} & \text{if } r \geq 0. \end{cases} \]

Combine:
\[f_{R@}(r,\theta) = f_R(r) f_\theta(\theta) = \begin{cases} \frac{1}{2\pi} re^{-\frac{r^2}{2}} & \text{if } r \geq 0, \theta \in [0,2\pi] \\ 0 & \text{elsewhere}. \end{cases} \]

Now, by the theorem on the transformation method for multivariate, we have for the new RVs \(X = R \cos \Theta \), \[\begin{align*}
X = R \cos \Theta, & \quad \text{following the transform.} \\
y = R \sin \Theta & \quad \text{with } x = r \cos \alpha, y = r \sin \alpha.
\end{align*} \]

that
\[f_{x,y}(x,y) = f_{R@}(r,\theta) \left| J(x,y) \right| \]
\[\left| J(x,y) \right| = \left| \frac{\partial (r,\theta)}{\partial (x,y)} \right| = \left| \det \begin{pmatrix} \frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} \\ \frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y} \end{pmatrix} \right| = \frac{1}{r} \]

for \(r \geq 0 \). Hence
\[f_{x,y}(x,y) = f_{R@}(r,\theta) \frac{1}{r} \]
\[= \frac{1}{2\pi} e^{-\frac{r^2}{2}} \cdot \frac{1}{r} \]
\[= \frac{1}{2\pi} e^{-\frac{r^2}{2}} (x^2 + y^2) \]

The marginal distribution is
\[f_X(x) = \int f_{x,y}(x,y) \, dy = \int_0^{2\pi} \frac{1}{2\pi} e^{-\frac{r^2}{2}} \, dy \]
\[= \frac{1}{2\pi} \int_0^{2\pi} e^{-\frac{x^2}{2}} \, dy = \left[\frac{1}{2\pi} \int_0^{2\pi} e^{-\frac{x^2}{2}} \, dy \right] = 1. \]
Hence \(f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \)

Similarly \(f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} \)

Hence, \(X, Y \sim N(0, 1) \). Moreover
\[
f_{X,Y}(x, y) = f_X(x) f_Y(y)
\]
So, \(X \) and \(Y \) are independent.

Note. To generate a single RV \(X \sim N(0, 1) \), one can use the CLT (Central Limit Theorem)
(1) Generate \(\delta_1, \delta_2, \ldots, \delta_N \) \(\text{i.i.d.} \ U[0,1] \)-distributed
(2) Set \(X_N = \sqrt{\frac{N}{2}} \left(\sum_{k=1}^{N} \delta_k - \frac{N}{2} \right) \)
Then, Approximately \(X_N \sim N(0, 1) \). If \(N \gg 1 \).

Accept-Reject (or Acceptance-Rejection)

The Acceptance-Rejection Method
(Due to John von Neumann, early 1950s.) necessary

This is a direct sampling method, without using some other distributions (e.g., \(U[0,1] \)). So, it is different from the inversion, or more generally, the transformation method.

Basic idea. Let \(f : \mathbb{R} \to [0, \infty) \) be the pdf of a RV from \(X \) to \(\mathbb{R} \). Assume \(f = 0 \) outside \([a, b]\), a finite interval \((a, b \in \mathbb{R}, a < b) \). We would like to sample a RV with this pdf. (The assumption \(f = 0 \) outside \([a, b]\) can be relaxed, to get approximate results.)
Let $c \in \mathbb{R}$ be an upper bound of f, e.g.,

\[c = \sup \{ f(x) : x \in [a, b] \}. \]

The algorithm for generating $Z \sim f$ is:

Step 1 Generate $X \sim U(a, b)$

Step 2 e.g., generate $U \sim U(0, 1)$.

$X \leftarrow (b-a) U + a$

Step 2 Generate $Y \sim U(0, c)$, independent of X.

Step 3 If $Y \leq f(X)$, return $Z = X$.

Otherwise, reject X and return to Step 1.

Note. Here, we still use a reference distribution $U([0, 1])$.

Why the algorithm generates $Z \sim f$? The reason is as follows. (X, Y) is uniformly distributed, and the accepted X satisfies $Y \leq f(X)$. Thus, the marginal distribution for the accepted X is f. Thus, the marginal $f_X(x) = \int f(x, y) dy = f(x)$.

A more general acceptance-rejection method is based on the following idea:

Let \(f : \mathbb{R}^n \rightarrow (0, \infty) \) be the PDF of a RV in \(\mathbb{R}^n \). Let \(g : \mathbb{R}^n \rightarrow (0, \infty) \) be the PDF of a RV in \(\mathbb{R}^n \), and \(\alpha \geq 1 \) be such that

1. We know how to sample RVs with \(g \) the PDF.
2. \(\alpha g(x) \geq f(x) \) for all \(x \).

But the region between the surfaces \(y = \alpha g(x) \) and \(y = f(x) \) is as small as possible. So, \(\alpha = \sup_x \frac{f(x)}{g(x)} \) is a good candidate.

Call \(\alpha g(x) \) a majorizing function of \(f(x) \), and \(g(x) \) a proposal PDF.

Algorithm: Acceptance-Rejection Method

1. **Step 1** Generate \(X \sim g \).
2. **Step 2** Generate \(Y \sim U[0, \alpha g(X)] \).
3. **Step 3** If \(Y \leq f(X) \) then accept \(Z = X \), otherwise reject. Return to step 1.

Theorem The algorithm generates \(Z \sim f \).
Proof. Let \(A = \{ (x, y) : 0 \leq y \leq g(x) \} \subseteq \mathbb{R}^n \times \mathbb{R}^m \),
\(B = \{ (x, y) : 0 \leq y \leq f(x) \} \subseteq \mathbb{R}^n \times \mathbb{R}^m \).

Note that the volume of \(A \) is \(|A| = \alpha \), since \(g \) is a PDF, and the volume of \(B \) is \(|B| = 1 \), since \(f \) is a PDF.

From Steps 1 and 2, \((X, Y)\) is uniformly distributed on \(A \). To see this, let \(\varrho(x, y) \) denote the joint PDF of \((X, Y)\), and let \(\vartheta(y|x) \) denote the conditional PDF of \(Y \) given \(X = x \). Then,
\[
\varrho(x, y) = \begin{cases} g(x) \vartheta(y|x) & \text{if } (x, y) \in A, \\ 0 & \text{otherwise}. \end{cases}
\]

By step 2 implies that \(\vartheta(y|x) = \frac{1}{\alpha g(x)} \) for \(y \in [0, g(x)] \), and \(\vartheta(y|x) = 0 \) elsewhere. Thus,
\[
\varrho(x, y) = \frac{1}{\alpha} \quad \text{for every } (x, y) \in A.
\]

Let \((X^*, Y^*)\) be the first accepted point, i.e., the first point in \(B \). Since \((X, Y)\) is uniformly distributed on \(A \), \((X^*, Y^*)\) is uniformly distributed on \(B \). But, the volume \(|B| = 1 \). So, this joint PDF of \((X^*, Y^*)\) is \(1 \) Thus, the marginal PDF of \(Z = X^* \) is
\[
\int_{0}^{\infty} \frac{1}{\alpha} \, dy = f(x). \quad \square
\]

Note that the efficiency of this algorithm is defined as
\[
P\left((X, Y)\text{'s accepted}\right) = \frac{\alpha \text{vol}(B)}{\text{vol}(A)} = \frac{\alpha}{\alpha} = 1.
\]

Also, in generating many RVs \(X \) we introduce a similar concept:
acceptance rate = \# of \(X \) accepted \# of \(X \) generated (= efficiency)
Often a slightly modified version of the above algorithm is used.

\[X \sim U[0, \alpha g(x)] \text{ is same as setting } \]
\[Y = U | \alpha g(x), \text{ where } U \sim U[0,1]. \]

Then, \(Y \leq f(x) \) is equivalent to \(U \leq \frac{f(x)}{\alpha g(x)}. \)

Hence, the modification is:

Generate \(X \) from \(g(x) \) and accept it with probability \(\frac{f(x)}{\alpha g(x)} \).

Algorithm: Modified Accept-Reject Method

1. Sample a RV \(Z \sim f \).
2. Let \(f \) be a given PDF of RV \(\sim \mathbb{R}^n \).
3. Let \(g \) be a PDF of RV \(\sim \mathbb{R}^n \) and \(\alpha \geq 1 \).
4. Suppose \(f(x) \leq \alpha g(x) \forall x \in \mathbb{R}^n \) (Common R^n cube replaced by a finite region, the support of \(f \), if \(f \) is finitely supported).

Steps

1. **Step 1** Generate \(X \) from \(g \).
2. **Step 2** Generate \(U \sim U[0,1] \) independent of \(X \).
3. **Step 3** If \(U \leq \frac{f(x)}{\alpha g(x)} \) then \(Z \leftarrow X \).
 Otherwise, reject \(X \), and go to Step 1.

Example

Let \(f(x) = \frac{1}{2\pi R} \sqrt{R^2 - x^2}, -12 \leq x \leq 12 \), for some \(R > 0 \). \(f \geq 0 \) and \(\int_{-12}^{12} f(x) \, dx = 1 \). \(f \) is a PDF.

2. Take the proposed distribution \(g(x) = \frac{1}{2R} \) for \(x \in [-R, R] \). Choose \(\alpha = \text{const. small}, \text{ s.t. } \alpha g(x) \geq f(x), x \in [-12, 12] \).

The smallest such \(\alpha \) is \(\alpha = \frac{1}{16R}. \)
We sample a RV \(Z \) with distribution \(f \) as follows:

1. Generate independent \(U_1, U_2 \sim U[0, 1] \).
2. Use \(U_2 \) to generate \(X \) via the inversion method:
 \[X = (2U_2 - 1)R \]
3. Calculate
 \[f(X) = \sqrt{1 - (2U_2 - 1)^2} \]
4. If \(U_1 \leq f(X) / \sqrt{g(X)} \), i.e.,
 \[(2U_2 - 1)^2 \leq 1 - U_1^2 \]
 or
 \[U_1^2 + 4U_2^2 - 4U_1 \leq 0 \]
 then accept \(X \) and return \(Z = X = (2U_2 - 1)R \).
 Otherwise, reject \(X \) and go to 1.

The expected number of trials is \(\alpha = \frac{4}{\pi} \) and the efficiency is \(\frac{1}{\alpha} = \frac{\pi}{4} \approx 0.785 \).

Another variation of the above algorithm is the so-called "squeeze accept-reject method"

Let \(f \) be a PDF.

Let \(g, h \) also be PDFs that are relatively easy to sample. (e.g., \(h(x) \) can be a piecewise linear function)

Assume
\[h(x) \leq f(x) \leq \alpha g(x) \quad \forall x. \]

Algorithm

1. **Step 1** Generate \(X \sim g(x), U \sim U[0, 1] \).
2. **Step 2** Accept \(X \) if \(U \leq \frac{f(x)}{\alpha g(x)} \).
3. **Step 3** Otherwise, accept \(X \) if \(U \leq f(x) / \alpha g(x) \).
Example. Sample $X \sim N(0, 1)$ by the accept-reject method. The PDF is $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \ (x \in \mathbb{R})$.

First, we choose a proposal PDF:

$$g(x) = \frac{1}{2} e^{-\frac{|x|}{2}} \ (x \in \mathbb{R}).$$

Observe that we can describe g as the distribution of an exponential $RV \ (\text{Exp}(λ))$, with $λ = 1$ multiplied randomly by $±1$. Thus, we can generalize a $RV \ V \sim g$ as follows:

1. Generate $U_1, U_2 \sim \text{U}[0, 1]$, independent.
2. If $U_1 < \frac{1}{2}$ then set $V = -\log U_2$.
 Otherwise, set $V = \log U_2$.

Now, set

$$\lambda = \sup_{x \in \mathbb{R}} \frac{f(x)}{g(x)} = \sup_{x \geq 0} \frac{\frac{2}{\sqrt{\pi}} e^{-\frac{x^2}{2}}}{\frac{1}{2} e^{-\frac{x}{2}}} = \sqrt{\frac{2}{\pi}} \approx 1.33.$$

So, $\lambda g(x)$ is a majorizing function of $f(x)$, i.e.,

$$0 \leq f(x) \leq \lambda g(x) \ (x \in \mathbb{R}).$$

The accept-reject method for generating $X \sim N(0, 1)$

Step 1. Generate $V \sim g$ using $U_1, U_2 \sim \text{U}[0, 1]$ independent, as in (1), (2) above.

Step 2. General $X \sim \text{U}[\log(V), 1]$ by generating $U_3 \sim \text{U}[0, 1]$ and setting $Y = \lambda g(V) U_3 = \frac{1}{2} U_3 e^{-V} \ (\iff U_3 \leq \frac{f(V)}{\lambda g(V)}).$

Step 3. If $Y < f(V)$ then accept and set $X \sim V$. Otherwise, reject and go to Step 1.

Efficiency. Require an average of $\frac{1}{\lambda} = 0.76$ proposals since acceptance rate

$$\frac{1}{\lambda} \approx \frac{1}{1.33} = 0.75.$$

So, need to draw an average of $3 \times 0.75 = 2.25$ uniform random numbers to generate $X \sim N(0, 1)$.

\[21\]
Discrete Accept-Reject Method

Generate a discrete $\mathbf{RV} \mathbf{X}$ from a known target PMF $p: \mathcal{X} \rightarrow [0, 1]$. $p_i = P(X = x_i), \ i \in \mathcal{X}$. \mathcal{X} is finite or countably infinite. $x_i \in \mathcal{X}$, distinct.

\[\sum_{i \in \mathcal{X}} p_i = 1. \]

Suppose we know how to generate a RV V from a proposal PMF $q: \mathcal{X} \rightarrow [0, 1]$.

$\hat{q}_i = (i \in \mathcal{X}), \sum_{i \in \mathcal{X}} \hat{q}_i = 1$. Suppose also there exists $\alpha \in \mathbb{R}$, $\alpha > 0$ such that

\[p_i \leq \alpha q_i, \ \forall i \in \mathcal{X}. \]

Then, we can proceed as follows:

1. Generate $V \sim q$.
2. Generate $Y \sim U[0, \alpha q_V]$.
3. If $Y \leq \frac{1}{\alpha} p_V$ then accept. Set $X \leftarrow V$ and stop.
 Otherwise, reject. Go to (1).

Example: $\mathcal{X} = \{1, 2, \ldots\}$. The target PMF p is given by $p_i = \frac{1}{i^2}$, $i = 1, 2, \ldots$. ($p_i \geq \frac{1}{\hat{q}} \forall i, \sum_{i \in \mathcal{X}} q_i = 1$).

Take the proposal PMF to be \hat{q} with

\[\hat{q}_i = \frac{1}{(i+1)^2}, \ i = 1, 2, \ldots. \]

We can check that:

\[p_i \leq \alpha \hat{q}_i = \frac{1}{i} - \frac{1}{i+1} \Rightarrow \alpha = 2. \]

(\(\lfloor \cdot \rfloor \) = greatest integer $\leq \cdot$.) So, easy to generate $V \sim q$. Also,\[\max_{i \in \mathcal{X}} \frac{p_i}{q_i} = \frac{p_1}{q_1} = \frac{1}{2}. \]

Now, the algorithm generating $X \sim p$ is:

1. Generate $U \sim U[0, 1]$ and set $V \leftarrow -\ln U$.
2. Generate $(i \in \mathbb{N}_0, 1)$ and set $Y \leftarrow U \left(\frac{i}{\alpha} + 1 \right)$.\[q_1 \leq Y \leq q_i \]
3. If $Y \leq \frac{1}{\alpha} p_V$ then accept. Set $X \leftarrow V$ and stop.
 Otherwise, goto Step 1.

Let \(X_1, \ldots, X_M \) be \(M \) distinct real numbers. Denote \(V = \{ X_1, \ldots, X_M \} \) and \(S = \{ 1, 2, \ldots, M \} \). Let \(X : S \to V \) be a discrete RV such that
\[
P_i = \mathbb{P}(X = X_i) > 0, \quad \forall i \in S
\]
and
\[
\sum_{i=1}^{M} P_i = 1.
\]

So, the discrete density for \(X \) is given by
\[
f(x) = \begin{cases}
P_i & \text{if } x = X_i \text{ for some } i \in S; \\ 0 & \text{otherwise}. \end{cases}
\]

We wish to sample \(Z \sim f \).

The discrete inversion method: Generate \(U \sim U[0,1] \), search \(m \) s.t. \(p_1 + \cdots + p_{m-1} < U \leq p_1 + \cdots + p_{m-1} + p_m \), and set \(Z \leftarrow X_m \). This involves the search of \(m \) with the complexity \(O(M) \) for linear search or \(O(\log M) \) for binary search.

The alias method consists of two parts: set up and sampling. Set up means the construction of \(M \) evenly weighted 2-point densities, equivalent to the original density, requiring \(\mathcal{O}(M) \) work with the complexity same as that of the discrete inversion method. Then, sampling is to sample first a \(M \) even values uniformly, followed by sampling a two-point density, i.e., generating a RV to be some \(x \) with some probability \(p \leftarrow p \) and some \(y \) with probability \(1 - p \).
Setup: Original distribution/density

\[\begin{array}{cccc}
T_1 & T_2 & \cdots & T_M \\
1 & 2 & \cdots & M \\
\end{array} \]

\[\beta > 0, \sum \beta = 1 \]

Construct 2xM table

\[\begin{array}{cccc}
a_1 & a_2 & \cdots & a_M \\
c_1 & c_2 & \cdots & c_M \\
b_1 & b_2 & \cdots & b_M \\
j_1 & j_2 & \cdots & j_M \\
\end{array} \]

Rules:
1. \(\alpha_i \geq 0, \beta_i \geq 0 \)
2. \(\alpha_k \in \{1, \ldots, M\} \) (labels).
3. \(\alpha_k + \beta_k = 1 \)

Example:
\[\begin{array}{cccccc}
\beta_1 = 0.41, \beta_2 = 0.27, \beta_3 = 0.07 \\
\beta_4 = 0.14, \beta_5 = 0.11 \end{array} \]

\[\begin{array}{ccccc}
0.41 & 0.27 & 0.07 & 0.14 & 0.11 \\
1 & 2 & 3 & 4 & 5 \\
\end{array} \]

Setup:

- Poor guys = \(\alpha_k \) with \(\beta_k \leq \frac{1}{M} \) stand in 1st row.
- Rich guys = \(\alpha_k \) with \(\beta_k > \frac{1}{M} \).

First column then becomes poor. \(\alpha_k = \frac{1}{M} \), call it a middle class number (\(\frac{1}{M} \)).

Note: From \(M \) to \(2M \), sum uniform in \(\alpha \) and columns. \(\alpha_k + \beta_k = \frac{1}{M} \) (\(k = 1, 2, \ldots, M \)).

Note: It is possible that a rich \(\alpha_k \) becomes 0 after donating its value to poorer \(\beta_k \) numbers/guys. In this case, other rich numbers need to be two or more at values, e.g., 0.25, 0.06, 0.29, 0.3, 0.3.
Alias Algorithm

Set up (Construct M evenly weighted two-point densities that are equivalent to the given density.)

Step 1 Set $S = \{1, 2, ..., M\}$.
- Set $t = 1$.
- Set $v_k = \frac{p_k}{M}$ for each k.

Step 2 Set i_t to value of k such that v_{i_t} minimizes v_k.
- Set j_t to value of k such that v_{j_t} maximizes v_k.
- Set $a_t = v_{i_t}$.
- Set $b_t = \frac{1}{M} - a_t$.
- Set v_{i_t}.
- Remove i_t from S.

Step 3 Set $t = t + 1$.
- If $t = M$, go to step 2; otherwise, stop.

Alias Algorithm

Sampling

1. Generate $U_i \sim U[0, 1]$ and set $K = \lceil MU_i \rceil$.
 ([x] = smallest integer $\geq x$.)

2. Generate $U_i \sim U[0, 1]$.
 - Set $Z \leftarrow X_{i_K}$ if $U_i \leq a_{i_K}$.
 - Otherwise set $Z \leftarrow X_{j_K}$.

Theorem The algorithm generates $Z \sim f$.

Key Equivalence: $P_k = \frac{1}{M} \sum_{m=1}^{M} \frac{a_{m} \cdot I_{[m, m+1)} + b_{m} \cdot I_{[m+1, \infty[}}{v_{k \in S}} \left[I_{[m, m+1)} + I_{[m+1, \infty[} \right]$.

Prove this by induction.
The composition method

Let \(f \) be the PDF of a RV \(X : \mathbb{R} \to \mathbb{R} \). Let \(f \geq 0 \) and \(\int f(x) \, dx = 1 \). Divide the region between the graph of \(y = f(x) \) and the x-axis into finitely many regions, say \(S_1, S_2, ..., S_m \), with areas \(x_1, x_2, ..., x_m \), respectively. So \(\sum_{k=1}^{m} x_k = \int f(x) \, dx = 1 \).

(See the above figure.)

The composition method to generate a RV \(X \sim f \) is as follows:

1. Generate a RV \(\mathcal{I} \in \{1, 2, ..., m\} \) with the discrete density \((x_1, x_2, ..., x_m) \).
2. Generate \((V, W) \) uniformly in \(S_\mathcal{I} \).
3. Set \(X \leftarrow V \).

If \(S_\mathcal{I} \) are mostly regular (e.g., rectangles), then step 2 is more efficient.

Generalization: Write \(f = \sum_{i=1}^{M} x_i f_i \) as mixture of known densities \(f_i \).