Math 240A: Real Analysis, Fall 2012
Additional Exercise Problems

1. Let (X, ρ) be a metric space. Define \(d : X \times X \to \mathbb{R}\) by
 \[
d(x, y) = \frac{\rho(x, y)}{1 + \rho(x, y)} \quad \forall x, y \in X.
 \]
 Prove that (X, d) is also a metric space.

2. Let (X, ρ) be a metric space and E a closed subset of X. Define \(d : X \to \mathbb{R}\) by
 \[
d(x) = \inf_{y \in E} \rho(x, y).
 \]
 For each integer $n \geq 1$ define \(f_n : X \to [0, \infty)\) by
 \[
f_n(x) = \frac{1}{1 + nd(x)} \quad \forall x \in X.
 \]
 Prove that $0 \leq f_n \leq 1$ for each n, \(\{f_n\}_{n=1}^\infty\) is decreasing, and \(\lim_{n \to \infty} f_n(x) = \chi_E(x)\) for all $x \in X$.

3. Let (X, ρ) be a metric space. If a Cauchy sequence \(\{x_n\}\) in X has a subsequence that converges to some $x \in X$. Then \(\{x_n\}\) itself converges to x.

4. Prove that any discrete metric space is complete.

5. Let X and Y be two nonempty sets and $f : X \to Y$ a mapping. For any $T \subseteq Y$ define $f^{-1}(T) = \{x \in X : f(x) \in T\}$. Let $\mathcal{M} = \{f^{-1}(E) : E \subseteq Y\}$. Show that \mathcal{M} is a σ-algebra on X.

6. Let (X, \mathcal{M}, μ) be a measure space with μ finite. Let $A_n \in \mathcal{M}$ \((n = 1, 2, \ldots)\) be such that $\sum_{n=1}^\infty \mu(A_n) < \infty$. Prove that
 \[
 \mu\left(\bigcap_{m=1}^\infty \bigcup_{k=m}^\infty A_k \right) = 0.
 \]

7. Let $\mathcal{B}_\mathbb{R}$ and \mathcal{L} denote the Borel and Lebesgue σ-algebras on \mathbb{R}, respectively. Why \(\text{card } (\mathcal{L}) > \text{card } (\mathcal{B}_\mathbb{R})\)?

8. Let $a, b \in \mathbb{R}$ with $a < b$. Let
 \[
f(x) = \begin{cases}
 \frac{1}{b-a} & \text{if } a < x < b, \\
 0 & \text{if } x \leq a \text{ or } x \geq b.
 \end{cases}
 \]
 Define $F : \mathbb{R} \to \mathbb{R}$ by
 \[
 F(x) = \int_{-\infty}^x f(t) \, dt.
 \]
(1) Show that the Lebesgue–Stieltjes measure \(\mu_F \) associated to \(F \) is a probability measure on \((\mathbb{R}, \mathcal{B}_\mathbb{R})\).
(2) Show that \(\mu_F(E) = 0 \) if \(E \in \mathcal{B}_\mathbb{R} \) and \(E \cap (a, b) = \emptyset \).
(3) Let \(G = (c, d) \) with \(c, d \in \mathbb{R} \) such that \(a < c < d < b \). What is \(\mu_F(G) \)?

9. Let \(X \) be a non-empty set and \(\mathcal{P}(X) \) its power set. Let \(\delta \) be the Dirac delta measure on \((X, \mathcal{P}(X))\) concentrated on a point \(y \in X \).
 (1) For any \(E \subseteq X \), calculate \(\int_X \chi_E \, d\mu \).
 (2) Let \(f : X \to [0, \infty) \) be a function. Show that it is measurable and calculate \(\int_X f \, d\mu \).

10. Let \(X \) be a non-empty set and \(\mathcal{P}(X) \) its power set. Let \(\mu \) be the the counting measure on \((X, \mathcal{P}(X))\). Given \(f : X \to [0, \infty) \). Find conditions under which \(\int_X f \, d\mu < \infty \).

11. Let \((X, \mathcal{M}, \mu)\) be a measure space. Let \(E \in \mathcal{M} \) be such that \(\mu(E) \) and \(\mu(E^c) \) are both positive and finite. Define \(f_n = \chi_E \) if \(n \) is odd and \(f_n = 1 - \chi_E \) if \(n \) is even. Show that

\[
\int_X \left(\liminf_{n \to \infty} f_n \right) \, d\mu < \liminf_{n \to \infty} \int_X f_n \, d\mu,
\]

i.e., the strict inequality in Fatou’s lemma can occur.

12. Exercise 7 on page 27.
