1. Let $\{E_n\}_{n=1}^{\infty}$ be a sequence of sets. Define

$$\limsup_{n \to \infty} E_n = \{x : x \in E_n \text{ for infinitely many } n\},$$

$$\liminf_{n \to \infty} E_n = \{x : x \in E_n \text{ for all but finitely many } n\}.$$

Prove that

$$\limsup_{n \to \infty} E_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_n \quad \text{and} \quad \liminf_{n \to \infty} E_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} E_n.$$

2. Let X and Y be two sets and $f : X \to Y$ a mapping. Let $\{Y_\alpha\}_{\alpha \in A}$ be a family of subsets of Y. Prove

$$f^{-1}\left(\bigcup_{\alpha \in A} Y_\alpha\right) = \bigcup_{\alpha \in A} f^{-1}(Y_\alpha) \quad \text{and} \quad f^{-1}\left(\bigcap_{\alpha \in A} Y_\alpha\right) = \bigcap_{\alpha \in A} f^{-1}(Y_\alpha).$$

3. Find a bijection from \mathbb{N} to \mathbb{N}^2.

4. Construct a sequence of open sets $U_n (n = 1, 2, \ldots)$ of \mathbb{R} such that $\cap_{n=1}^{\infty} U_n$ is not open.

5. Let X be a complete metric space and E a non-empty subset of X. Prove that E is closed if and only if E is complete.

6. Let (Y, B) be a measurable space and X a nonempty set. For any $f : X \to Y$, define $\mathcal{A} = \{f^{-1}(B) : B \in B\}$. Prove that \mathcal{A} is a σ-algebra of subsets of X.

7. An algebra \mathcal{A} is a σ-algebra iff \mathcal{A} is closed under countable increasing unions (i.e., if $E_n \in \mathcal{A}$ for all $n = 1, 2, \ldots$ and $E_1 \subseteq E_2 \subseteq \cdots$, then $\cup_{n=1}^{\infty} E_n \in \mathcal{A}$.)

8. Does there exist an infinite σ-algebra which has only countably many members? If yes, provide an example. If no, prove it.

9. Let X be a nonempty set and \mathcal{E} a class of subsets of X. Let \mathcal{M} be the σ-algebra of subsets of X generated by \mathcal{E}. Prove that \mathcal{M} is the union of the σ-algebra generated by \mathcal{F} as \mathcal{F} ranges over all countable subsets of \mathcal{E}.