Math 240A, Fall 2019
Solution to Problems of HW#3
B. Li, Oct. 2019

1. We have
 \[\mu \left(\bigcap_{j=1}^{n} A_j \right) = \mu \left(\left(\bigcup_{j=1}^{n} A_j^c \right)^c \right) = 1 - \mu \left(\bigcup_{j=1}^{n} A_j^c \right)
 = 1 - \sum_{j=1}^{n} \mu(A_j^c) = 1 - \sum_{j=1}^{n} (1 - \mu(A_j))
 = 1 - n + \sum_{j=1}^{n} \mu(A_j) > 1 - n + n - 1 = 0. \square \]

2. We have \(E = \bigcap_{n=1}^{\infty} E_n \). The sequence \(E_{n+1} \subseteq E_n \), and \(\mu(E_n) \) decreases with \(n \), and \(\mu \left(\bigcup_{n=1}^{\infty} E_n \right) < \infty \). By the continuity from above of a measure, we have
 \[\mu(E) = \lim_{n \to \infty} \mu \left(\bigcup_{k=1}^{n} E_k \right). \]
 But, \(\mu \left(\bigcup_{k=1}^{n} E_k \right) \leq \sum_{k=1}^{n} \mu(E_k) \to 0 \) as \(\sum_{k=1}^{\infty} \mu(E_k) < \infty \).
 Thus, \(\mu(E) = 0. \square \]

3. No. Let \(\mathbb{Q} = \{ q_1, q_2, \ldots \} \) be the set of all rational numbers. Then \(G = \bigcup_{k=1}^{\infty} (r_k - \frac{1}{2k}, r_k + \frac{1}{2k}) \) is open and \(\mu(G) \leq \sum_{k=1}^{\infty} 2 \cdot \frac{1}{2k} = 2. \) But \(G = \mathbb{Q} \) and \(\mu(G) = \infty. \square \]

4. We have \(m(BVA) = m(B) - m(A) = 0 \) and \(EVA \subseteq BVA \). Since \(m \) is complete, we have \(EVA \subseteq \mathcal{L} \) (i.e., \(EVA \) is Lebesgue measurable) and \(m(EVA) = 0 \). Now, \(E = (EVA)VA \) is also Lebesgue measurable. \(m(E) = m(EVA)m(A) = m(A). \square \)
5. (1) We have \((-\infty, 1) = \bigcup_{n=1}^{\infty} (-n, 1 - \frac{1}{2^n})\), a union of increasing sets (\(n\)-intervals). Hence,

\[
\mu((-\infty, 1)) = \mu\left(\bigcup_{n=1}^{\infty} (-n, 1 - \frac{1}{2^n})\right)
= \lim_{n \to \infty} \mu\left(-n, 1 - \frac{1}{2^n}\right)
= \lim_{n \to \infty} \left[F\left(1 - \frac{1}{2^n}\right) - F(-n)\right]
= 1 - 0 = 1.
\]

(2) Similarly,

\[
\mu((-\infty, 1]) = \lim_{n \to \infty} \mu\left(-n, 1\right]
= \lim_{n \to \infty} \left[F(1) - F(-n)\right]
= 4 - 0
= 4.
\]

(3) \(\mu([1, \infty)) = \mu((-\infty, 1]) + \mu((1, 2]) + \mu((2, \infty))\)

\[
= 4 + F(2) - F(1) + \lim_{n \to \infty} \mu\left(2, n+2\right]
= 4 + 7 - 4 + \lim_{n \to \infty} \left[F(n+2) - F(2)\right]
= 7 + 7 - 7 = 7.
\]

(4) \(\mu\left\{\{2\}\right\} = \mu\left(\bigcup_{n=1}^{\infty} (2 - \frac{1}{n}, 2 + \frac{1}{n})\right)\)

\[
= \lim_{n \to \infty} \mu\left((2 - \frac{1}{n}, 2 + \frac{1}{n})\right)
= \lim_{n \to \infty} \left[F(2 + \frac{1}{n}) - F(2 - \frac{1}{n})\right]
= 7 - 7 = 0.
\]
Let \(H(x) = \begin{cases} 0 & \text{if } x < 0, \\ 1 & \text{if } x \geq 0. \end{cases} \) (This is called the Heaviside function.) \(H \) is increasing and right continuous. We show that \(M_H = \delta \). Hence, all increasing and right continuous functions \(F \) with \(M_F = \delta \) are just \(H(x) + c \) for some constants \(c \).

Recall the Dirac measure \(\delta \) is defined by

\[
\delta(E) = \begin{cases} 1 & \text{if } 0 \in E \\ 0 & \text{if } 0 \notin E \end{cases}
\]

for any \(E \in \mathbb{B} \). We have

\[
\delta(0^0) = 1, \quad \delta(1^0) = 1.
\]

\[
M_H(0^0) = \lim_{n \to 0} M_H\left(-\frac{1}{n}, \frac{1}{n}\right) = \lim_{n \to 0} \left[H\left(\frac{1}{n}\right) - H\left(-\frac{1}{n}\right)\right] = 1,
\]

and

\[
M_H(1^0) = \lim_{n \to 0} M_H\left(0, \frac{1}{n}\right) = \lim_{n \to 0} \left[M_H\left(\frac{1}{n}\right) - M_H(0)\right] = 1.
\]

Hence, both \(\delta \) and \(M_H \) are concentrated on \(\{0\} \).

Finally, we show that

\[
\delta((a, b]) = H(b) - H(a), \quad \forall a, b \in \mathbb{R}, \ a < b.
\]

\[
\delta((a, b]) = 1 \text{ or } 0 \text{ if } 0 \in (a, b) \text{ or } 0 \notin (a, b).
\]

Same for the right-hand side: \(H(b) - H(a) = M_H((a, b]) = 1 \text{ or } 0 \text{ if } 0 \in (a, b) \text{ or } 0 \notin (a, b) \).

As \(M_H(1^0) = 1 \).

\(\square \)
Proposition 1.20. If \(E \in \mathcal{M}_\mu \) and \(\mu(E) < \infty \), then for any \(\varepsilon > 0 \) there exists a set \(A \) that is a finite union of open intervals such that \(\mu(E \Delta A) < \varepsilon \).

Let \(\varepsilon > 0 \). By Theorem 1.18, there exists an open set \(U \supseteq E \) such that \(\mu(U) < \mu(E) + \frac{\varepsilon}{2} \). If \(U \) is already a finite union of open intervals, then let \(A = U \).

We have:

\[
\mu(E \Delta A) = \mu((E \setminus A) \cup (A \setminus E)) \\
\leq \mu(E \setminus A) + \mu(A \setminus E) \\
= \mu(A) - \mu(E) < \frac{\varepsilon}{2} < \varepsilon.
\]

Otherwise, \(U = \bigcup_{j=1}^{\infty} (a_j, b_j) \) for some \(a_j, b_j \in \mathbb{R} \) with \(a_j < b_j \) (\(j = 1, 2, \ldots \)). [Note that any open set in \(\mathbb{R} \) is a countable union of open intervals.]

Hence,

\[
\mu(U) = \sum_{j=1}^{\infty} \mu((a_j, b_j)) < \mu(E) + \frac{\varepsilon}{2} < \infty.
\]

There exists \(N \in \mathbb{N} \) such that

\[
\sum_{n=N+1}^{\infty} \mu((a_j, b_j)) < \frac{\varepsilon}{2}.
\]

Let \(A = \bigcup_{n=1}^{N} (a_j, b_j) \subseteq U \). \(A \) is a finite union of open intervals. \(\mu(U \setminus A) = \sum_{n=N+1}^{\infty} \mu((a_j, b_j)) \)

\[
< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
\]

\[\Box\]
Let $\varepsilon = \frac{1}{2^n} \ (0,1)$ and $\varepsilon_k = \varepsilon^n / 2^{k-1} \ (k=1,2,\ldots)$

Divide $[0,1]$ into

3 intervals with

the middle open

one having length ε_1 and the other two closed intervals

having same length. Denote by F_1 the union of the

two closed intervals.

For each of the two closed intervals of F_1, divide it

into 3 intervals with the middle open interval

of length ε_2 and the other two closed intervals

having same length. Denote by F_2 the 4 closed

remaining disjoint intervals.

Continuing by induction, we have a sequence of

closed sets $F_k \ (k=1,2,\ldots)$. Each F_k comes is the

union of 2^k disjoint closed intervals of same

length.

Let $F = \bigcup F_k$. Then $F \subseteq [0,1]$. F is closed and

hence compact.

If $0 < a < b < 1$ and $(a,b) \subseteq F$. Then $(a,b) \subseteq F_k \ (k=1,2,\ldots)$

But F_k is the union of 2^k disjoint closed intervals

So, (a,b) is contained in one such interval which

has the length $\leq \frac{1}{2^k}$ as $m(F_k) \leq 1$. But as k large

enough $b-a \geq \frac{1}{2^k}$. This is impossible. Thus F

contains no open interval. Hence F is nowhere

closed.

Finally $\mu(F) = 1 - \varepsilon_1 - 2\varepsilon_2 - \varepsilon_3 - \ldots = 1 - 2 - \varepsilon^n - \ldots$

$= 1 - \frac{\varepsilon}{1-\varepsilon} = 1 - \frac{\varepsilon}{2-\varepsilon} / 1 - \frac{\varepsilon}{2-\varepsilon} = \varepsilon \quad \square$
9. If the statement were not true, then there exists \(x \in (0,1) \) such that \(m(E \cap I) \geq x m(I) \) for any open interval \(I \).

\[\forall \varepsilon > 0. \exists \text{ open set } U \supseteq E \text{ such that } m(U) < m(E) + \varepsilon. \] Let \(U = \bigcup_{i=1}^{\infty} I_i \) with each \(I_i \) an open interval and \(I_i \cap I_j = \emptyset \) if \(i \neq j \). (The case that \(U \) is a finite union of disjoint open intervals can be treated similarly.) Since \(m(E \cap I_i) \leq m(I_i) \), we have for each \(i \)

\[m(U) \leq m(\bigcup_{i=1}^{\infty} I_i) = m(U \setminus E) + m(U \cap E) \leq m(U \setminus E) + \varepsilon. \]

and hence \(m(U) = \frac{1}{1-x} m(U \setminus E) \).

Consequently,

\[0 < m(E) \leq m(U) = \sum_{i=1}^{\infty} m(I_i) \leq \frac{1}{1-x} \sum_{i=1}^{\infty} m(I_i \setminus E) \]

\[= \frac{1}{1-x} m\left(\bigcup_{i \geq 1} (I_i \setminus E) \right) = \frac{1}{1-x} m(U \setminus E) < \frac{\varepsilon}{1-x}. \]

Since \(\varepsilon > 0 \) is arbitrary, this implies \(m(E) = 0 \), a contradiction. \(\Box \)

10. (1) Recall that \(N_r = (N \cap [0,1-r]) + r \cup (N \cap [1-r,1]) - (1-r) \) for each \(r \in \mathbb{Q} \cap [0,1) \). Define similarly

\[E_r = (E \cap [0,1-r]) + r \cup (E \cap [1-r,1]) - (1-r) \subseteq N_r, \forall r \in \mathbb{Q} \cap [0,1) \]

Since \(N_r \cap N_s = \emptyset \) if \(r \neq s \), \(r, s \in \mathbb{Q} \cap [0,1) \), we have \(E_r \cap E_s = \emptyset \) if \(r \neq s \), \(r, s \in \mathbb{Q} \cap [0,1) \). This is clear by the translation invariance of the Lebesgue measure that \(m(E_r) = m(E) \). Thus, if \(m(E) > 0 \) then

\[m(E) = \sum_{r \in \mathbb{Q} \cap [0,1)} m(E_r) = \sum_{r \in \mathbb{Q} \cap [0,1)} m(U \setminus E_r) \leq m([0,1)) = 1. \]

a contradiction. Hence \(m(E) = 0 \).
(2) Note that \(E = \bigcup_{n \in \mathbb{Z}} (E \cap [n, n+1]) \), a disjoint union.

Since \(m(E) > 0 \), there exists \(n \in \mathbb{Z} \) such that \(m(E \cap [n, n+1]) > 0 \). Let \(F = E \cap [n, n+1] \) and \(m(F) > 0 \). If we can show that \(F \) contains a Lebesgue non-measurable subset, then \(E \cap [n, n+1] \) contains a Lebesgue non-measurable set \(\mathcal{D} + n \).

So, it suffices to assume \(E \subseteq [0, 1) \).

Suppose \(m(E) > 0 \) but any subset of \(E \) is Lebesgue measurable.

Observe that for Part (1) holds true with \(N \) replaced by \(\mathcal{N}_r \) for any \(r \in (0, 1) \), since \(\mathcal{N}_r \) consists points exactly one from that each equivalence class defined by \(x \sim y \Leftrightarrow x - y \in \mathbb{Q} \). Thus, \(m(\mathcal{N}_r) = 0 \)

Consequently, since \([0, 1) = \bigcup_{r \in (0, 1)} \mathcal{N}_r \) disjoint, we get

\[
0 \leq m(E) = m(E \cap [0, 1)) = m\left(\bigcup_{r \in (0, 1)} (E \cap \mathcal{N}_r) \right) = \sum_{r \in (0, 1)} m(E \cap \mathcal{N}_r) = 0,
\]

This is a contradiction. Hence, \(E \) contains a non-measurable set. \(\square \)