1. (1) Assume f is measurable. Then for any $r \in \mathbb{R}$, $(r, \infty) \in \mathcal{B}_R$. Hence $f^{-1}(r, \infty) \in \mathcal{M}$.

 Conversely, assume $f^{-1}(r, \infty) \in \mathcal{M}$ for all $r \in \mathbb{R}$. Let $a \in \mathbb{R}$. Choose $r_n \in \mathbb{R}$ such that r_n decreases and $r_n \to a$. Then, $(a, \infty) = \bigcap_{n=1}^{\infty} (r_n, \infty)$ and $f^{-1}((a, \infty)) = \bigcap_{n=1}^{\infty} f^{-1}((r_n, \infty)) \in \mathcal{M}$ since each $f^{-1}((r_n, \infty)) \in \mathcal{M}$. But $\{a, \infty\}$ generates \mathcal{B}_R. Hence, f is measurable.

2. Let $F(x) = \liminf_{n \to \infty} f_n(x)$ and $\overline{f}(x) = \limsup_{n \to \infty} f_n(x)$ for any $x \in X$. Then $F(x) \geq f(x)$ $(x \in X)$. Both F and \overline{f} are measurable. Thus

 $\{x \in X : \liminf_{n \to \infty} f_n(x) \text{ exists} \} = \{x \in X : F(x) = f(x) \in (0, \infty) \}$

 $= \{x \in X : (\overline{f} - f)(x) = 0 \} = (\overline{f} - f)^{-1}(\{0\}) \in \mathcal{M}$

 as $\{0\} \in \mathcal{B}_R$ and $\overline{f} - f$ is measurable.

2. Assume f is increasing. (The case that f is decreasing can be treated similarly.)

 Let $x \in \mathbb{R}$ and define $A_x = \{x \in \mathbb{R} : f(x) > x\}$. If $A_x = \emptyset$ then $A_x \in \mathcal{B}_R$. So, assume $A_x \neq \emptyset$. Set $x_0 = \inf A_x$. If $x_0 = -\infty$ then $A_x = (-\infty, 0) \in \mathcal{B}_R$.

 Indeed, let $x \in \mathbb{R}$, then since $x_0 = -\infty$ there exists $\rho \in A_x$ such that $\rho < x$. Then
\[f(x) \geq f(x_0) > x. \] So, \(x \in Ax \) and \(Ax \subseteq \mathbb{R} \). But if \(Ax \subseteq \mathbb{R} \) then \(Ax = \mathbb{R} \subseteq \mathbb{R} \). Finally, assume \(x_0 = m(f \cap Ax \cap (-\infty, x)) > -\infty \). Then, clearly, \(x < x_0 \Rightarrow x \notin Ax \). Moreover, if \(x > x_0 \) then \(\exists x_i \in Ax \) such that \(x_0 < x_i < x \). Hence \(f(x) \geq f(x_i) > x \) and \(x \notin Ax \). Therefore \((-\infty, x_0) \cap Ax = \emptyset \) and \(Ax = (x_0, \infty) \). Consequently, either \(Ax = (x_0, \infty) \) or \(Ax = [x_0, \infty) \). In both cases, \(Ax \in \mathcal{B}_{\mathbb{R}} \). Thus \(f \) is Borel measurable.

4. Let \(f(x) = X_{(x_0, x)}(x), x \in \mathbb{R} \). Then \(f \) is Lebesgue measurable since \(f'(x) = 0 \) a.e. But \(f \) is nowhere continuous as \(f = 1 \) at \(x_0 \in \mathbb{Q} \) and \(0 \) at \(x \in \mathbb{R} \), and \(\mathbb{Q} \) is dense in \(\mathbb{R} \), and \(\mathbb{Q}^c \) is also dense in \(\mathbb{R} \), as \(m(\mathbb{Q}^c \cap (a, b)) = b - a \) for any \(a < b \).

3. Recall that \(f : X \rightarrow \mathbb{R} \) is measurable on \(A \subseteq \mathcal{M} \) means that for any \(E \in \mathcal{B}_{\mathbb{R}} \), \(f^{-1}(E) \in \mathcal{M} \). If \(f \) is measurable then \(f^{-1}(E) \in \mathcal{M} \) for any \(E \in \mathcal{B}_{\mathbb{R}} \). If \(A, B \subseteq \mathcal{M} \), then \(f^{-1}(E) \cap A \subseteq \mathcal{M} \) and \(f^{-1}(E) \cap B \subseteq \mathcal{M} \). Thus \(f \) is measurable on \(A \) and on \(B \).

Conversely, suppose \(X = A \cup B \), \(A, B \subseteq \mathcal{M} \), and \(f : X \rightarrow \mathbb{R} \) is measurable on \(A \) and on \(B \). Let
5. No. Example. \(\mu = \delta \) : the Dirac mass concentrated on \(\{0\} \), i.e., \(\delta(E) = 1 \) if \(0 \in E \), \(\delta(E) = 0 \) if \(0 \notin E \) where \(E \in B \mathbb{R} \) Let \(V = (0, 1) \). Then

\[
f(x) = \delta((0, 1) + x) = \delta((x, x+1))
\]

\[
= \begin{cases}
1 & \text{if } x < 0 < x+1, \text{ i.e. } -1 < x < 0 \\
0 & \text{otherwise}
\end{cases}
\]

Clearly, \(f(x) = \chi_{(-1, 0)}(x) \) it is discontinuous at \(x = 0, -1 \). □

6. (1) Note that \(f: [0, 1] \to [0, 1] \) is continuous, nondecreasing, and \(f([0,1]) = [0,1] \).

Clearly \(g(x) = f(x) + x \) is strictly increasing on \([0,1] \). Hence \(g \) is injective on \([0,1] \). Moreover, \(g(0) = 0 \), \(g(1) = f(1) + 1 = 2 \). By the Intermediate Value Theorem, for any \(z \in (0, 2) \), \(z \in (0,1) \) such that \(g(z) = z \), since \(g \) is continuous on \([0,1] \). Thus, \(g: [0,1] \to [0,2] \) is surjective. Hence, \(g: [0,1] \to [0,2] \) is a bijection. Consequently, \(h = g^{-1} : [0, 2] \to [0,1] \) is continuous as \(G \) is continuous. [In general, if \(g: [a, b] \to [a,b] \) is strictly increasing, continuous, and bijective, then \(g: ([a,b]) \to [a,1] \) is continuous.]
Otherwise, \(\exists x_0 \in [a,b], \exists x_n \in [a,b]\) such that \(x_n \to x_0\). But \(g^{-1}(x_n) \neq g^{-1}(x_0)\). Without loss of generality, we may assume that \(x_0\) such that
\[
g^{-1}(x_n) > n + g^{-1}(x_0) \quad (n=1, 2, \ldots)
\]
Thus, \(x_n > g(n + g^{-1}(x_0)) > g(g^{-1}(x_0)) = x_0\). Hence, \(x_n \to x_0\), a contradiction.

(2) Note that the Cantor function \(f: [0,1] \to [0,1]\) is constant on any interval of \([0,1] \setminus C\). If \(I\) is such an interval, then \(g\) translates \(I\) by the constant, and \(m(g(I)) = m(I)\). But the closed set \([0,1] \setminus C\) is a countable union of disjoint such intervals. Thus, \(m(g([0,1] \setminus C)) = m([0,1] \setminus C) = 1\). By Part (1), \(m(g(C)) + m(g([0,1] \setminus C)) = m([0,2]) = 2\). Hence, \(m(g(C)) = 1\).

(3) We have \(g(B) = A \subseteq g(C)\). Hence \(B \subseteq C\).
But \(m(C) = 0\), and \(m\) is complete. Hence \(B\) is Lebesgue measurable, and \(m(B) = 0\).
If \(B\) were Borel measurable, \(A = g^{-1}(B)\) would be also Borel measurable, since \(g^{-1}\) is continuous by Part (1). Hence, \(A\) would be Lebesgue measurable, a contradiction.

(4) Let \(F = B\), as in Part (3). This is Lebesgue measurable, since \(B\) is. Let \(G = g^{-1}\) as above. Then \((F \circ G)(F((B))) = g^{-1}(B) = g(B) = A\). Since \(A\) is non-Lebesgue measurable, \(F \circ G\) is not Lebesgue measurable.
7. Suppose there existed $x_0 \in (0, 1)$ such that $f(x_0) \neq g(x_0)$, say, $f(x_0) > g(x_0)$. Let $\lambda = f(x_0)$. Since f is decreasing, \(\{ f \geq \lambda \} = \{ f \geq f(x_0) \} \supseteq (0, x_0] \), and since g is decreasing and left continuous, \(\exists x_1 : 0 < x_1 < x_0, \) such that $f(x_0) > g(x_1) \geq g(x_0)$. Thus, \(\{ g \geq \lambda \} = \{ g \geq f(x_0) \} \supseteq \{ g > g(x_1) \} \subseteq (0, x_1] \). Therefore, \(m(\{ g \geq \lambda \}) \geq m((0, x_0]) = x_0 \)

\(m(\{ g > g(x_1) \}) \leq m((0, x_1]) = x_1 < x_0 = m(\{ f \geq \lambda \}) \). This is a contradiction. Hence $f = g$ on $(0, 1)$. \(\square \)

8. \(\lambda(\emptyset) = \int X \phi f \, du = 0 \).

If $E_j \in \mathcal{P}$ ($j = 1, 2, \ldots$) are disjoint, then \(\lambda \left(\bigcup_{j=1}^{\infty} E_j \right) = \int f \, du = \int \chi_{E_1} f \, du = \int \chi_{E_2} f \, du = \ldots \int \chi_{E_j} f \, du = \ldots \int \chi_{E_{\infty}} f \, du = \lim_{j \to \infty} \int \chi_{E_j} f \, du \). Hence λ is a measure.

If $\phi \in L^+$ is a simple function with $\phi = \sum_{j=1}^{m} a_j \chi_{E_j}$, $a_j > 0$.

If $E_j \in \mathcal{P}$, disjoint, \(\bigcup_{j=1}^{\infty} E_j = X \). Then

\[\int_X \phi \, du = \sum_{j=1}^{m} a_j \int_{E_j} f \, du = \int_X \phi f \, du. \]

Let $g \in L^+$. Let \(\{ \phi_n \} \) be a sequence of increasing simple functions in L^+ such that $\phi_n \to g$. Then, $0 \leq \phi_1 \leq \phi_2 \leq \ldots$ and $\phi_n f \to gf$. By the Monotone Convergence Theorem,

\[\int_g \, du = \lim_{n \to \infty} \int_{\phi_n} f \, du = \lim_{n \to \infty} \int_{\phi_n} f \, du = \sum_{j=1}^{m} a_j \int_{E_j} f \, du. \]
9. (1) Denote \(E_0 = \{ f = 0 \} \) and \(E = \{ f > 0 \} \). For any \(n \in \mathbb{N} \),
\[
\infty > \int_{E_0} f \, du = \int_{E_0} f \, du > \int_{E_0} ndu = n \mu(E_0).
\]
\[
\sum_{n=1}^{\infty} \mu(E_0) = 1 \int_{E_0} f \, du \to 0 \quad \text{as} \quad n \to \infty.
\]
Hence \(\mu(E_0) = 0 \).

Let \(F = \{ f > 1 \} \) and \(F_n = \{ \frac{1}{n+1} \leq f < \frac{1}{n} \} \) \((n=1, 2, \ldots)\). Then \(X = E_0 \cup F \cup \bigcup_{n=1}^{\infty} F_n \). This is a disjoint union of measurable sets. By Part (1), we have
\[
\infty > \int_{F} f \, du = \int_{E_0} f \, du + \int_{F_0} f \, du = \int_{X} f \, du - \int_{E_0} f \, du
\]
\[
= \int_{F} f \, du + \sum_{n=1}^{\infty} \int_{F_n} f \, du \geq \int_{F} f \, du + \sum_{n=1}^{\infty} \int_{F_n} f \, du
\]
\[
= \mu(F) + \sum_{n=1}^{\infty} \frac{1}{n+1} \mu(F_n).
\]
Thus, \(\mu(F) < \infty, \mu(F_n) < \infty \) \((n=1, 2, \ldots)\). Hence \(\mu \) is \(\sigma \)-finite.

(2) \(\forall \varepsilon > 0 \). Continuing from the above, we have
\[
\int_{X} f \, du = \int_{F} f \, du + \sum_{n=1}^{\infty} \int_{F_n} f \, du < \infty
\]
Thus, \(\exists N \in \mathbb{N} \) such that
\[
\int_{F} f \, du - \varepsilon < \int_{F} f \, du + \sum_{n=1}^{N} \int_{F_n} f \, du = \int_{E} f \, du
\]
where \(E = F \cup \bigcup_{n=1}^{N} (F_n) \subseteq F \), and \(\mu(E) \leq \mu(F) + \sum_{n=1}^{N} \mu(F_n) \lesssim \varepsilon \) as shown above. \(\square \)
10. We show (1) \Rightarrow (2), (2) \Rightarrow (1),

(2) \Rightarrow (3), (3) \Rightarrow (2),

(4) \Rightarrow (3), (1) \Rightarrow (4).

(1) \Rightarrow (2). We have $|f| \in L^1$ and $|f| = 0$ a.e.

If $\psi \in L^1$ is a simple function and $\phi = 0$ a.e. Then by definition we have $\int \phi \, du = 0$.

If ϕ is a simple function, $0 \leq \phi \leq |f|$, then $\phi = 0$ a.e.

Hence $\int \phi \, du = 0$. Thus,

$$\int |f| \, du = \sup \{ \int \phi \, du : 0 \leq \phi \leq |f|, \phi \text{ simple} \}$$

$$= 0.$$

(2) \Rightarrow (1). By the disjoint union of measurable sets

$$X = \{ |f| = 0 \} \cup \{ |f| \geq 1 \} \cup \bigcup_{n=1}^{\infty} \{ \frac{1}{n+1} \leq |f| < \frac{1}{n} \},$$

we have

$$0 = \int |f| \, du = \int_{|f| = 0} |f| \, du + \int_{|f| \geq 1} |f| \, du$$

$$+ \sum_{n=1}^{\infty} \int_{\{ \frac{1}{n+1} \leq |f| < \frac{1}{n} \}} |f| \, du$$

$$\geq \int_{|f| \geq 1} 1 \, du + \sum_{n=1}^{\infty} \int_{\{ \frac{1}{n+1} \leq |f| < \frac{1}{n} \}} \frac{1}{n+1} \, du$$

$$= \mu\left(\{ |f| \geq 1 \} \right) + \sum_{n=1}^{\infty} \mu\left(\left\{ \frac{1}{n+1} \leq |f| < \frac{1}{n} \right\} \right)$$

$$= \mu\left(\{ |f| > 0 \} \right) \geq 0.$$

Hence $\mu(\{ |f| > 0 \}) = 0$ and $f = 0$ a.e.
(2) ⇒ (3)
∀E ∈ Μ, \| f dμ \| ≤ \| f^+ dμ \| ≤ \| f^- dμ \| = 0.

(3) ⇒ (2): Let E = \{ f ≥ 0 \} ∈ Μ. Then,
0 = \int f dμ = \int f^+ dμ = \int f^- dμ = 0.
Similarly, \int f^- dμ = 0. Hence,
\int |f| dμ = \int (f^+ + f^-) dμ = \int f^+ dμ + \int f^- dμ = 0.

(4) ⇒ (3): Let \varphi = \chi_E \text{ for } E \in Μ. Then
\int f \varphi dμ = \int f dμ = 0.

(1) ⇒ (4): \forall \varphi : X → \mathbb{R}, measurable. Since f = 0 a.e., f \varphi = 0 a.e. Hence, as shown that
(1) ⇒ (2), we have \int |f| dμ = 0. But then
\int |f \varphi| dμ ≤ \int |f| dμ = 0. This implies f \varphi ∈ L^1(μ).