Math 240A: Real Analysis, Fall 2019

Homework Assignment 6
Due Friday, November 15, 2019

1. Let \(f \in L^1(m) \). Assume \(f(0) = 0 \) and \(f'(0) \) exists. Define \(g : \mathbb{R} \to \mathbb{R} \) by \(g(0) = 0 \) and \(g(x) = f(x)/x \) if \(x \neq 0 \). Prove that \(g \in L^1(m) \).

2. (1) Find the smallest \(c \in \mathbb{R} \) such that \(\log(1 + e^t) < c + t \) for all \(t \in (0, \infty) \).
(2) Let \(f : [0,1] \to [0,\infty) \) be Lebesgue integrable. Show that the following limit exists and calculate its value:
\[
\lim_{n \to \infty} \frac{1}{n} \int_0^1 \log \left[1 + e^{nf(x)} \right] \, dx.
\]

3. Construct Lebesgue integrable functions \(f_n : [0,1] \to [0,1] \) \((n = 1, 2, \ldots)\) such that \(\lim_{n \to \infty} \int_0^1 f_n \, dm = 1 \) and \(\{f_n(x)\} \) diverges for any \(x \in [0,1] \).

4. Prove the following variant of Egoroff’s theorem: Let \((X, M, \mu) \) be a measure space. Assume: (1) \(f, f_n : X \to \mathbb{C} \) are all measurable and \(f_n \to f \) a.e.; (2) there exists \(g \in L^1(\mu) \) such that \(|f_n| \leq g \) on \(X \) for all \(n \). Then, for any \(\varepsilon > 0 \), there exists \(E \subseteq M \) such that \(\mu(E) < \varepsilon \) and \(f_n \to f \) uniformly on \(E^c \).

5. Prove Lusin’s Theorem: Let \(-\infty < a < b < \infty \) and \(f : [a,b] \to \mathbb{C} \) be Lebesgue measurable. For any \(\varepsilon > 0 \), there exists a compact set \(E \subseteq [a,b] \) such that \(m(E^c) < \varepsilon \) and \(f|_E \) is continuous.

6. Let \((X, M, \mu) \) and \((Y, N, \nu) \) be two measure spaces. Let \(f : X \to \mathbb{C} \) and \(g : Y \to \mathbb{C} \) be two functions and define \(h : X \times Y \to \mathbb{C} \) by \(h(x,y) = f(x)g(y) \) for any \(x \in X \) and \(y \in Y \). Prove the following:
(1) If \(f : X \to \mathbb{C} \) is \(M \)-measurable and \(g : Y \to \mathbb{C} \) is \(N \)-measurable, then \(h : X \times Y \to \mathbb{C} \) is \(M \otimes N \)-measurable;
(2) If \(f \in L^1(\mu) \) and \(g \in L^1(\nu) \), then \(h \in L^1(\mu \times \nu) \) and \(\int_{X \times Y} h \, d(\mu \times \nu) = \left(\int_X f \, d\mu \right) \left(\int_Y g \, d\nu \right) \).

7. Let \((X, M, \mu) \) be a \(\sigma \)-finite measure space, \(f : X \to [0,\infty) \) a measurable function, and \(G_f = \{(x,y) \in X \times [0,\infty) : y \leq f(x)\} \).

Prove that \(G_f \) is \(M \otimes B_{\mathbb{R}} \)-measurable and that \((\mu \times m)(G_f) = \int_X f \, d\mu \).

8. Prove
\[
\int_0^1 \int_0^\infty \left(e^{-xy} - 2e^{-2xy} \right) \, dy \, dx
\neq \int_0^\infty \int_0^1 \left(e^{-xy} - 2e^{-2xy} \right) \, dx \, dy.
\]

9. Use Fubini’s Theorem and the formula \(\frac{1}{x} = \int_0^\infty e^{-xt} \, dt \) \((x > 0)\) to prove \(\lim_{A \to \infty} \int_0^A \frac{\sin x}{x} \, dx = \frac{\pi}{2} \).

10. Let \(a > 0, f : (0,a) \to \mathbb{R} \) be Lebesgue integral on \((0,a), \) and \(g(x) = \int_x^a t^{-1} f(t) \, dt \) \((0 < x < a)\). Prove that \(g \) is integrable on \((0,a)\) and \(\int_{(0,a)} g \, dm = \int_{(0,a)} f \, dm \).