1. Let \(X \) be a finite-dimensional normed vector space. Prove the following:
 (1) \(X \) is complete;
 (2) Any two norms on \(X \) are equivalent.
 (See Exercise 6 on page 155.)

2. Let \(\alpha \in (0, 1] \). Denote by \(C^{0,\alpha}([0, 1]) \) the vector space of all real-valued, Hölder continuous functions on \([0, 1]\) of exponent \(\alpha : f \in C^{0,\alpha}([0, 1]) \) means that \(f \in C([0, 1]) \) and
 \[
 [f]_\alpha := \sup_{x, y \in [0, 1], x \neq y} \frac{|f(x) - f(y)|}{|x - y|^\alpha} < \infty.
 \]
 Prove that
 \[
 \|f\| = \sup_{x \in [0, 1]} |f(x)| + [f]_\alpha
 \]
 is a norm on \(C^{0,\alpha}([0, 1]) \), and with this norm, \(C^{0,\alpha}([0, 1]) \) is a Banach space.

3. Let \(X \) be a normed vector space and \(M \) a closed subspace of \(X \). Prove the following:
 (1) \(\|x + M\| = \inf\{\|x + y\| : y \in M\} \) is a norm on the quotient space \(X/M \);
 (2) For any \(\varepsilon > 0 \) there exists \(x \in X \) such that \(\|x\| = 1 \) and \(\|x + M\| \geq 1 - \varepsilon \);
 (3) The projection map \(\pi(x) = x + M \) from \(X \) to \(X/M \) has norm 1;
 (4) If \(X \) is complete, so is \(X/M \).

4. Let \(X \) be an infinite-dimensional normed vector space. Prove the following:
 (1) There is a sequence \(\{x_j\} \) in \(X \) such that \(\|x_j\| = 1 \) for all \(j \) and \(\|x_j - x_k\| \geq 1/2 \) for \(j \neq k \).
 (2) \(X \) is not locally compact.
 (See Exercise 19 on page 160.)

5. If \(X \) is a Banach space and \(X^* \) is separable, then \(X \) is separable. (See Exercise 25 on page 160.)