1. Let \(n \in \mathbb{N} \) and \(-\infty < a = x_0 < x_1 < \cdots < x_n = b < \infty\). Denote by \(\mathcal{P}_n \) the set of all real polynomials of degree \(\leq n \).

 (1) Define \(l_j \in \mathcal{P}_n \) by \(l_j(x) = \prod_{i=0, i \neq j}^{n} (x-x_i)/(x_j-x_i) \) (\(j = 0, \ldots, n \)). Show that \(l_j(x_k) = \delta_{jk} \) (\(\delta_{jk} = 1 \) if \(j = k \) and \(0 \) if \(j \neq k \)).

 (2) Let \(f \in C([a,b]) \) and define \(L_n f \in \mathcal{P}_n \) by \((L_n f)(x) = \sum_{j=0}^{n} f(x_j) l_j(x) \) (called the Lagrange interpolation of \(f \)). Prove that \(L_n f \) is the unique polynomial in \(\mathcal{P}_n \) that satisfies \((L_n f)(x_j) = f(x_j) \) (\(j = 0, 1, \ldots, n \)).

 (3) Prove that the operator norm of the linear operator \(L_n : C([a,b]) \to C([a,b]) \) (where \(C([a,b]) \) is equipped with the maximum norm) is given by \(\|L_n\| = \max_{x \in [a,b]} \sum_{j=0}^{n} |l_j(x)| \).

2. Consider the Banach space \(L^\infty([0,1]) \) and its subspace \(C([0,1]) \).

 (1) Let \(x_0 \in (0,1) \) and define \(F : C([0,1]) \to \mathbb{C} \) by \(F(f) = f(x_0) \). Prove that \(F \in C([0,1])^* \).

 (2) By Hahn–Banach Theorem, there exists \(\tilde{F} \in L^\infty([0,1])^* \) such that \(\tilde{F} = F \) on \(C([0,1]) \) and \(\|\tilde{F}\|_{L^\infty([0,1])^*} = F_{C([0,1])} \). Prove that there exists no \(g \in L^1([0,1]) \) such that \(\tilde{F}(f) = \int_0^1 f(x)g(x) \, dx \) for all \(f \in L^\infty([0,1]) \).

3. Let \(\mathcal{X} \) be a normed vector space and \(\mathcal{X}^* \) its dual space.

 (1) Suppose \(x_n \to x \) weakly in \(\mathcal{X} \) (i.e., \(f(x_n) \to f(x) \) for any \(f \in \mathcal{X}^* \)). Prove that \(\sup_{n \geq 1} \|x_n\| < \infty \).

 (2) Assume in addition that \(\mathcal{X} \) is a Banach space. Suppose \(f_n \to f \) weak-* in \(\mathcal{X}^* \) (i.e., \(f_n(x) \to f(x) \) for any \(x \in \mathcal{X} \)). Prove that \(\sup_{n \geq 1} \|f_n\| < \infty \).

4. Let \(\mathcal{X} \) be an infinite-dimensional normed vector space. Prove that there exist \(x_k \in \mathcal{X} \) (\(k = 1, 2, \ldots \)) such that \(\|x_k\| = 1 \) for all \(k \geq 1 \) and \(\|x_j - x_k\| \geq 1/2 \) for all \(j, k = 1, 2, \ldots \) with \(j \neq k \). (See the hint in Exercise 19 on page 160.)

5. Let \(\mathcal{X} \) be a Banach space. Assume \(\mathcal{X}^* \) is separable. Prove that \(\mathcal{X} \) is also separable. (See the hint in Exercise 25 on page 160.)

6. Let \(\| \cdot \|_1 \) and \(\| \cdot \|_2 \) be two norms on a vector space \(\mathcal{X} \) such that \(\|x\|_1 \leq \|x\|_2 \) for any \(x \in \mathcal{X} \). Assume that \(\mathcal{X} \) is complete with respect to both norms. Prove that these norms are equivalent.

7. Let \(\mathcal{X} \) and \(\mathcal{Y} \) be Banach spaces. Let \(T : \mathcal{X} \to \mathcal{Y} \) be a linear map such that \(f \circ T \in \mathcal{X}^* \) for every \(f \in \mathcal{Y}^* \). Prove that \(T \) is bounded.

8. Let \(\mathcal{X} \) and \(\mathcal{Y} \) be Banach spaces. Let \(T_n \in L(\mathcal{X}, \mathcal{Y}) \) (\(n = 1, 2, \ldots \)) be such that \(\lim_{n \to \infty} T_n x \) exists for every \(x \in \mathcal{X} \). Define \(T x = \lim_{n \to \infty} T_n x \) (\(x \in \mathcal{X} \)). Prove that \(T \in L(\mathcal{X}, \mathcal{Y}) \).