1. Let \(U \) be a nonempty open subset of \(\mathbb{R}^n \). For any integer \(m \geq 0 \) and any \(\phi \in \mathcal{D}(U) \), let
\[
\|\phi\|_m = \max_{|\alpha| \leq m} \sup_{x \in U} |\partial^\alpha \phi(x)|.
\]
This defines a norm on \(\mathcal{D}(U) \).

 (1) Prove that the family of norms \(\{\|\cdot\|_m\}_{m=0}^\infty \) defines \(\mathcal{D}(U) \) a locally convex Hausdorff space that is in fact a metric space.

 (2) For the case \(n = 1 \) and \(U = \mathbb{R} \), pick \(\phi \in \mathcal{D}(\mathbb{R}) \) with \(\phi > 0 \) on \((0,1) \) and \(\phi = 0 \) outside \((0,1) \). Define \(\phi_m(x) = \sum_{j=1}^m \phi(x-j)/j \) \((m = 1, 2, \ldots) \). Prove that, with respect to the topology defined in part (1), \(\{\phi_m\}_{m=1}^\infty \) is a Cauchy sequence but it does not converge to any function in \(\mathcal{D}(\mathbb{R}) \).

2. Let \(U \) be a nonempty open subset of \(\mathbb{R}^n \). For any \(f \in L^1_{\text{loc}}(U) \), define
\[
T_f(\phi) = \int_{\mathbb{R}^n} f(x) \phi(x) \, dx \quad \forall \phi \in \mathcal{D}.
\]

 (1) Prove \(T_f \) is a distribution on \(U \).

 (2) Let \(1 \leq p \leq \infty \). Assume all \(f_j \) \((j = 1, 2, \ldots) \) and \(f \) are in \(L^p(U) \) and \(f_j \to f \) in \(L^p(U) \). Prove that \(T_{f_j} \to T_f \) in \(\mathcal{D}'(U) \).

 (3) Consider \(n = 1 \) and \(U = \mathbb{R} \). Construct \(L^1_{\text{loc}}(\mathbb{R}) \)-functions \(f_j \) \((j = 1, 2, \ldots) \) and \(f \) such that \(f_j \to f \) pointwise on \(\mathbb{R} \) but \(\{T_{f_j}\} \) does not converge to \(T_f \) in \(\mathcal{D}'(\mathbb{R}) \).

3. Let \(U \) be a nonempty open subset of \(\mathbb{R}^n \) and \(\mu \) be a Radon measure on \(U \). Define
\[
T_\mu(\phi) = \int_U \phi(x) \, d\mu \quad \forall \phi \in \mathcal{D}(U).
\]

 Prove that \(T_\mu \) is a distribution on \(U \) and that \(\text{supp}(T_\mu) = \text{supp}(\mu) \).

4. Suppose that \(f \) is continuously differentiable on \(\mathbb{R} \) except at \(x_1, \ldots, x_m \), where \(f \) has jump discontinuities, and that its pointwise derivative \(df/dx \) (defined except at \(x_1, \ldots, x_m \)) is in \(L^1_{\text{loc}}(\mathbb{R}) \). Prove that the distributional derivative of \(f \) is given by
\[
f' = (df/dx) + \sum_{j=1}^m [f(x_j+) - f(x_j-)] \tau_{x_j} \delta.
\]

5. Let \(H \) be the Heaviside function on \(\mathbb{R} \): \(H(x) = 1 \) if \(x > 0 \) and \(H(x) = 0 \) if \(x \leq 0 \). Let \(\delta \) be the Dirac measure at 0 (identified as a distribution on \(\mathbb{R} \)). Finally, let 1 be the constant function whose value is 1 at any point in \(\mathbb{R} \), identified as a locally integrable function and further as a distribution (cf. Problem 2). Prove that \(\delta' \ast H = \delta \), \(1 \ast \delta' = 0 \), and the associative law fails: \(1 \ast (\delta' \ast H) \neq (1 \ast \delta') \ast H \).

6. (Optional) Problem 11 on page 290.

7. Problem 20 on page 299.