1. If $f \in C_c(X)$ and $f \geq 0$ on X, then $\int_Y f \, d\mu \geq 0$. Thus I is positive. Since the restriction $f|_Y = X Y f$ and the integration are both linear, I is linear. Verify that ν is a Radon measure on X.

(1) Let $K \subseteq X$ be compact. So, K is closed, and $K \cap Y$ is closed. So, $K \cap Y$ is compact in X. Let $\{U_n \cap Y\}_{n=1}^\infty$ be an open cover of $K \cap Y$ in Y, where U_n is open in X. Then $U_n \cap (K \cap Y)$, Y, form an open cover of $K \cap Y$ in X. So, $\exists \{V_1, \ldots, V_m\} \subseteq Y$ such that $\bigcup_{i=1}^m V_i$ is a cover of $K \cap Y$ in X. Hence, $\{U_n \cap Y\}_{n=1}^\infty$ covers $K \cap Y$, and $K \cap Y$ is compact in Y. Thus $\nu(K) = \mu(K \cap Y) < \infty$.
(2) If E is a Borel subset of X then $E \cap Y$ is a Borel subset of Y. Since μ is a Radon measure on Y, it is outer regular at $E \cap Y$, i.e.,

$$\mu(E \cap Y) = \inf \{ \mu(U \cap Y) : U \text{ open in } X, U \cap Y \supseteq E \cap Y \}$$

(Open sets in Y are of the form $U \cap Y$, U open in X.)

Thus, by the def. of ν,

$$\nu(E) = \inf \{ \nu(U) : U \text{ open in } X, U \cap Y \supseteq E \cap Y \} =: a.$$

Let $b = \inf \{ \nu(U) : U \text{ open in } X, U \supseteq E \cap Y \}$. We have $a \leq b$ since $U \supseteq E \Rightarrow U \cap Y \supseteq E \cap Y$. If U is open in X and $U \cap Y \supseteq E \cap Y$ then for $V = U \cap Y$, open in X, $V \supseteq E$, and $\nu(V) = \mu(V \cap Y) = \mu(U \cap Y) = \mu(U)$.

Thus $a \leq b$. Hence $a = b$, and ν is outer regular.

(3) Let U be open in X. Then $U \cap Y$ is open in Y. Since μ is inner regular at $U \cap Y$,

...
\[\nu(U) = \mu(U \cap Y) \]
\[= \inf \{ \mu(F) : F \text{ compact in } Y, F \subseteq U \} \]
\[= \inf \{ \mu(F \cap Y) : F \text{ compact in } Y, F \subseteq U \} = c. \]

Denote \(d = \inf \{ \nu(K) : K \text{ compact in } X, K \subseteq U \} \)
\[= \inf \{ \mu(K \cap Y) : K \text{ compact in } X, K \subseteq U \}. \]

If \(F \) is compact in \(Y \) and \(F \subseteq U \), then \(F \) is also compact in \(X \) as \(Y \) is closed in \(X \). Thus \(d \leq c \).

Let \(K \) be compact in \(X \) and \(K \subseteq U \). Let \(F = K \cap Y \).

Then, \(F \) is compact in \(Y \) (cf. Part 1) and \(F \subseteq U \).
Moreover, \(\mu(K \cap Y) = \mu(F \cap Y) \geq c. \) Hence, \(d \geq c. \)

Thus, \(d = c \), and \(\nu \) is inner regular at \(U \).

By (1) – (3), \(\nu \) is a Radon measure on \(X \). Namely, \(\forall f \in C_c(X), \]
\[\int f \, d\nu = \int f \, d\nu|_Y + \int f \, d\nu = \int f \, d\mu|_Y = I(f), \]
\[\int f \, d\nu|_Y = \int f \, d\nu|_Y \]

By the uniqueness, \(\nu \) is exactly the Radon measure associated with \(I \).
2. Let $K \subseteq X$ be compact. Let $\phi_K \in C_c(X, [0, 1])$ be such that $K \subseteq \phi_K \subseteq X$. Let $f \in C_c(X)$ with $\text{supp}(f) \subseteq K$. Then $\|f\|_1 \phi_K \pm f \geq 0$ on X. So, $I(\|f\|_1 \phi_K \pm f) \geq 0$, i.e., $\|f\|_1 I(\phi_K) \pm I(f) \geq 0$. Hence, $|I(f)| \leq I(\phi) \|f\|_1$. Set $C_K = I(\phi_K)$.

3. (1) Clearly N is open. Since μ is a Radon measure, it is inner regular at N:

$$\mu(N) = \inf \{ \mu(K) : K \subseteq N, \ K \text{ compact} \}.$$

Let $N = \bigcup A_k$, each A_k is open in X and $\mu(A_k) = 0$. Let K be compact in X and $K \subseteq N$, then $\exists n \in N$ s.t. $K \subseteq \bigcup_{j=1}^{\infty} A_{k_j}$. Thus, $\mu(K) \leq \sum_{j=1}^{\infty} \mu(A_{k_j}) = 0$ and $\mu(N) = 0$. If G is open, $G \supseteq N$, and $\mu(G) = 0$ then G is one of A_k in the union $N = \bigcup A_k$. Hence, $G = N$.

(2) Let \(x \in \text{Supp}(u) \). Let \(f \in \mathcal{C}_c(X, [0,1]) \) be such that \(f(x) > 0 \). Let \(U = \{ y \in X : f(y) > \frac{1}{2} f(x) \} \).

Then \(U \) is open, since \(f \) is continuous, and \(x \in U \).

By (1), \(m(U) > 0 \). Thus

\[
\int_X f \, du \geq \int_U f \, du \geq \frac{1}{2} f(x) \cdot m(U) > 0.
\]

Conversely, assume \(x \notin \text{Supp}(u) \). Let \(U = (\text{Supp}(u))^c \).

So, \(U \) is open, \(x \in U \). Let \(K = \{ x \} \). Then, \(K \) is compact and \(K \subseteq U \). By Urysohn's Lemma, there exists \(f \in \mathcal{C}_c(X, [0,1]) \) such that \(K \subsetneq f \subseteq U \).

Thus \(f(x) = 1 \) as \(x \in K \) and \(f = 1 \) on \(K \). Since \(\text{Supp}(f) \subseteq U = (\text{Supp}(u))^c \), we have

\[
\int_{\text{Supp}(u)} f \, du = 0.
\]
4. Clearly \(\nu(E) > 0 \) \(\forall E \in \mathcal{B}_X \), and \(\nu(\emptyset) = 0 \).

If \(E_j \subseteq \mathcal{B}_X \) \((j \in \mathbb{N}) \) are disjoint and \(E = \bigcup_{j=1}^{\infty} E_j \in \mathcal{B}_X \), then
\[
\nu(E) = \int_E \phi \, d\mu = \int_X (\sum_{j=1}^{\infty} \chi_{E_j} \phi) \, d\mu
\]
\[
= \lim_{n \to \infty} \int_X \left(\sum_{j=1}^{n} \chi_{E_j} \phi \right) \, d\mu = \lim_{n \to \infty} \sum_{j=1}^{n} \nu(\mathcal{E}_j) = \sum_{j=1}^{\infty} \nu(\mathcal{E}_j)
\]
where \((A)\) is true by the Monotone Convergence Theorem.

as \(\phi \geq 0 \) and \(\phi \in L^1(\mu) \). Thus \(\nu \) is a Borel measure.

Now, we verify that \(\nu \) is a Radon measure.

(1) Since \(\phi \in L^1(\mu) \) and \(\phi \geq 0 \), \(\nu \) is finite on any Borel sets, hence, compact sets.

(2) Let \(E \in \mathcal{B}_X \). Let \(\varepsilon > 0 \). By Corollary 3.6 (which states that \(\int \phi \, d\mu \) is absolutely continuous on \(A \)), \(\exists \delta > 0 \) s.t. \(\int_A \phi \, d\mu < \varepsilon \) if \(A \subseteq \mathcal{B}_X \) and \(\mu(A) < \delta \).
Since \mathcal{M} is Radon, it is outer regular at E. Hence $\exists U$ open, $U \supseteq E$ s.t. $m(U \setminus E) = m(U) - m(E) < \varepsilon$. Thus,

\[\nu(U) - \nu(E) = \nu(U \setminus E) = \int_{U \setminus E} \phi \, dm < \varepsilon. \]

Thus, $\nu(E) = \inf \{ \nu(U) : U \text{ open, } U \supseteq E \}$ i.e., ν is outer regular at E, and ν is outer regular.

(3) Let U be open. $\forall \varepsilon > 0$, $\exists \delta > 0$ s.t. $A \subset B_x$ and $m(A) < \delta \implies \int_A \phi \, dm < \varepsilon$. Now, \mathcal{M} is Radon, so it is inner regular at U. So, there exists compact set $K \subseteq U$ s.t. $m(U \setminus K) < \delta$. Hence $\nu(U \setminus K) = \int_{U \setminus K} \phi \, dm < \varepsilon$. Thus, $\nu(K) \leq \nu(U) < \nu(K) + \varepsilon$.

So, $\nu(U) = \sup \{ \nu(K) : K \text{ compact, } K \subseteq U \}$ i.e., ν is inner regular at U. So, it is inner regular at opens. (1) \rightarrow (3) $\implies \nu$ is Radon.
We show now \(\text{supp}(v) \subseteq \text{supp}(\phi) \lor \text{supp}(\mu) \).

Equivalently, \((\text{supp}(v))^c \supseteq (\text{supp}(\phi))^c \lor (\text{supp}(\mu))^c \).

Let \(U = (\text{supp}(\phi))^c \). Then \(U \) is open, and \(\phi = 0 \) on \(U \).

So, \(\nu(U) = \int_U \phi \, du = 0 \). Thus, \(U \subseteq (\text{supp}(v))^c \).

Similarly, let \(V = (\text{supp}(\mu))^c \). Then \(V \) is open, and \(\mu(V) = 0 \). Thus, \(\nu(V) = \int_V \phi \, du = 0 \).

Hence \(V \subseteq (\text{supp}(\phi))^c \).

5. We show that \(\nu_0 \) is a Radon measure. Clearly it is a Borel measure. It is a finite measure, so it is finite on compact sets. Let \(E \subseteq \mathbb{R}^n \). If \(x \notin E \) then \(\nu_0(E) = 0 \). If \(U \) is open and \(E \subseteq U \) then \(\nu_0(U) = 1 \). Hence, \(\nu_0 \) is outer regular at \(E \).

If \(x \notin E \), then \(\nu_0(E) = 0 \). For the open set \(U = X \setminus \{x_0,3\} \),
we have \(E \subseteq U \) and \(\Delta_{x_0}(U) = 0 \). Thus, \(\Delta_{x_0} \) is also outer regular at \(E \). Finally, let \(U \) be open. If \(x_0 \in U \) then \(\Delta_{x_0}(U) = 1 \). Also, \(K = \{ x_0 \} \) is compact and \(K \subseteq U \), \(\Delta_{x_0}(K) = 1 \). Thus, \(\Delta_{x_0} \) is inner regular at \(U \). If \(x_0 \notin U \), \(\Delta_{x_0}(U) = 0 \). If \(K \subseteq U \), \(K \) is compact, then \(x_0 \notin K \). So \(\Delta_{x_0}(K) = 0 \). Hence, \(\Delta_{x_0} \) is inner regular at \(U \).

Thus, \(\Delta_{x_0} \) is inner regular at open sets and therefore \(\Delta_{x_0} \) is a Radon measure.

\(\forall f \in C_c(X) \) \(\int f \, d\Delta_{x_0} = \sum f(x_0) \Delta_{x_0}(\{x_0\}) = f(x_0) \cdot \delta_{x_0} \{x_0\} = I(f) \).

By the uniqueness in the Riesz representation, \(\Delta_{x_0} \) is the Radon measure associated with the functional \(I \).
6. Let \(K = \text{supp}(\mu) \). \(K \) is a closed subset of \(X \). Since \(X \) is compact, \(K \) is compact. Moreover, \(m(K^c) = 0 \). Hence \(m(K) = m(K) + m(K^c) = m(X) = 1 \).
 Let \(H \) be a compact subset of \(X \). Assume \(H \not\subseteq K \) (i.e., \(H \subseteq K \) but \(H \not= K \)). Then \(\exists x \in K \setminus H \). In particular, \(\exists \) open sets \(U \) and \(V \) s.t. \(x \in U \), \(H \subseteq V \), and \(U \cap V = \emptyset \). (See Proposition 4.23.)
 Since \(x \in K = \text{supp}(\mu) \), \(\mu(U) > 0 \). [Otherwise \(U \subseteq (\text{supp}(\mu))^c \) and \(x \not\in U \).] Since \(m(K) = 1 \), \(m(U \cap K) = m(U) > 0 \). \([1 = m(X) \geq m(U \cup K) \geq m(K) = 1 \Rightarrow m(U \cup K) = 1 \]. But \(m(U) + m(K) = m(U \cap K) + m(U \cup K) \). So, \(m(U \cap K) = \mu(U) > 0 \).]
 Since \(H \subseteq (U \cup K) \) and \(H \cap (U \cap K) = \emptyset \), we have \(m(H) + m(U \cap K) \leq m(K) = 1 \). \(m(H) \leq 1 - m(U \cap K) < 1 \).
7. Let μ be a Borel measure on \mathbb{R}^n, which is an LCHI space. Assume μ is a Radon measure. Then by definition μ is finite on compact sets.

Conversely, assume that μ is finite on all compact subsets of \mathbb{R}^n. If $U \neq \emptyset$ is an open subset of \mathbb{R}^n, then it is the countable union of compact sets $\overline{B(x, \varepsilon)}$, where $x \in U \cap \mathbb{Q}^n$, $\varepsilon \in (0, \infty) \cap \mathbb{Q}$, and $B(x, \varepsilon) = \{y \in \mathbb{R}^n : |y-x| < \varepsilon \}$ such that $B(x, 2\varepsilon) \subset U$. Thus, by Theorem 7.8, μ is a Radon measure.