1. If \(f \in C_0(X) \) and \(f \geq 0 \) on \(X \), then \(f \upharpoonright Y \geq 0 \). Hence \(I(f) = \int_Y f \upharpoonright Y \, du \geq 0 \). Thus \(I \) is positive.

Since the restrictions \(f \upharpoonright Y = X \upharpoonright f \) and the integration are both linear, \(I \) is linear.

Verify that \(V \) is a Radon measure on \(X \).

1. Let \(K \subseteq X \) be compact. So, \(K \) is closed, and \(K \upharpoonright Y \) is closed. \(K \upharpoonright Y \subseteq Y \). So, \(K \upharpoonright Y \) is compact in \(X \).

Let \(\{U_0, \cup \} \) be an open cover of \(K \upharpoon \right Y \) in \(Y \), where \(U_0 \) is open in \(X \). Then \(U_0(x(A)) \subseteq Y \) forms an open cover of \(K \upharpoon \right Y \) in \(X \). So, \(\exists \{U_1, \cup \} \) s.t. \(U_1, \cup \subseteq Y \) cover \(K \upharpoon \right Y \) in \(X \). Hence \(\{U_1, \cup \} \) covers \(K \upharpoon \right Y \), and \(K \upharpoon \right Y \) is compact in \(Y \). Thus \(V(K) = \int (K \upharpoon \right Y) \).
(2) If E is a Borel subset of X, then $E \cap Y$ is a Borel subset of Y. Since μ is a Radon measure on Y, it is outer regular at $E \cap Y$, i.e.,

$$\mu(E \cap Y) = \inf \{ \mu(U \cap Y) : U \text{ open in } X, U \cap Y \supseteq E \cap Y \}$$

(Open sets in Y are of the form $U \cap Y$, U open in X.)

Thus, by the def. of V,

$$V(E) = \inf \{ V(U) : U \text{ open in } X, U \cap Y \supseteq E \cap Y \} =: a.$$

Let $b = \inf \{ V(U) : U \text{ open in } X, U \supseteq E \}$. We have $a \leq b$ since $U \supseteq E \Rightarrow U \cap Y \supseteq E \cap Y$. If U is open in X and $U \cap Y \supseteq E \cap Y$ then for $V = U \cap Y$ open in X, $V \supseteq E$, and $V(V) = \mu(V \cap Y) = \mu(U \cap Y) = \mu(U)$.

Thus $a \geq b$. Hence $a = b$, and V is outer regular.

(3) Let U be open in X. Then $U \cap Y$ is open in Y. Since μ is inner regular at $U \cap Y$,
\[\nu(U) = \mu(U \cap Y) \]
\[= \inf \{ \mu(F) : F \text{ compact in } Y, F \subseteq U \} \]
\[= \inf \{ \mu(F \cap Y) : F \text{ compact in } Y, F \subseteq U \} \]
\[= \inf \{ \mu(K \cap Y) : K \text{ compact in } X, K \subseteq U \}. \]

Denote \(d = \inf \{ \nu(K) : K \text{ compact in } X, K \subseteq U \}. \)

If \(F \) is compact in \(Y \) and \(F \subseteq U \), then \(F \) is also compact in \(X \) as \(Y \) is closed in \(X \). Thus, \(d \leq c \).

Let \(K \) be compact in \(X \) and \(K \subseteq U \). Let \(F = K \cap Y \).

Then, \(F \) is compact in \(Y \) (cf. Part 1) and \(F \subseteq U \).

Moreover, \(\mu(K \cap Y) = \mu(F \cap Y) \geq c \). Hence, \(d \geq c \).

Thus, \(d = c \), and \(\nu \) is inner regular at \(U \).

By (a) - (b), \(\nu \) is a Radon measure on \(X \). Now, \(\forall f \in C_c(X), \int f \, d\nu = \int f \, d\nu + \int f \, d\nu = \int f (Y \cup X) \, d\nu = I(f) \).

By the uniqueness, \(\nu \) is exactly the Radon measure associated with \(I \).
2. Let \(K \subseteq X \) be compact. Let \(f_K \in C_c(X, [0, 1]) \) be such that \(K \subseteq f_K^c \). Let \(f \in C_c(X) \) with \(\text{supp}(f) \subseteq K \). Then \(\|f\|_1 f_K \leq f \leq f_K \) on \(X \). So, \(I(\|f\|_1 f_K \pm f) \geq 0 \), i.e., \(\|f\|_1 I(\phi_K) \pm I(f) \geq 0 \). Hence, \(|I(f)| \leq I(\phi) \|f\|_1 \). Set \(\zeta_K = I(\phi_K) \).

3. (1) Clearly \(N \) is open. Since \(\mu \) is a Radon measure, it is inner regular at \(N \):

\[
\mu (N) = \inf \{ \mu (K) : K \subseteq N, K \text{ compact} \}.
\]

Let \(N = \bigcup A \), each \(A \) is open in \(X \) and \(\mu (A) = 0 \). Let \(K \) be compact in \(X \) and \(K \subseteq N \), then \(\exists n \in N \) s.t. \(K \subseteq \bigcup_{j=1}^{n} A_j \). Thus, \(\mu (K) \leq \sum_{j=1}^{n} \mu (A_j) = 0 \) and \(\mu (N) = 0 \).

If \(G \) is open, \(G \supseteq N \), and \(\mu (G) = 0 \) then \(G \) is one of \(A_k \) in the union \(N = \bigcup A_k \). Hence, \(G = N \).
(2) Let \(x \in \text{Supp}(\mu) \). Let \(f \in C_c(X, [0, 1]) \) be such that \(f(x) > 0 \). Let \(U = \{ y \in X : f(y) > \frac{1}{2} f(x) \} \).

Then \(U \) is open since \(f \) is continuous, and \(x \in U \).

By (1), \(\mu(U) > 0 \). Thus

\[
\int_X f \, d\mu \geq \int_U f \, d\mu = \frac{1}{2} f(x) \mu(U) > 0.
\]

Conversely, assume \(x \notin \text{Supp}(\mu) \). Let \(U = (\text{Supp}(\mu))^c \).

So, \(U \) is open, \(x \notin U \). Let \(K = \{ x \} \). Then, \(K \) is compact and \(K \subseteq U \). By Urysohn's Lemma, there exists \(f \in C_c(X, [0, 1]) \) such that \(K \leq f \leq U \).

Thus \(f(x) = 1 \) as \(x \in K \) and \(f = 1 \) on \(K \). Since \(\text{Supp}(f) \subseteq U = (\text{Supp}(\mu))^c \), we have

\[
\int_{\text{Supp}(\mu)} f \, d\mu = 0.
\]
4. Clearly, $\nu(E) > 0 \forall E \in \mathcal{B}_X$, and $\nu(\emptyset) = 0$. If $E_j \in \mathcal{B}_X$ ($j \in \mathbb{N}$) are disjoint and $E = \bigcup_{j=1}^\infty E_j \in \mathcal{B}_X$, then $\nu(E) = \int_X \phi \, d\mu = \int_X \chi_E \phi \, d\mu = \int_X \left(\sum_{j=1}^\infty \chi_{E_j} \phi \right) \, d\mu = \lim_{n \to \infty} \int_X \left(\sum_{j=1}^n \chi_{E_j} \phi \right) \, d\mu = \lim_{n \to \infty} \sum_{j=1}^n \nu(E_j) = \sum_{j=1}^\infty \nu(E_j)$, where (A) is true by the Monotone Convergence Theorem as $\phi > 0$ and $\phi \in L^1(\mu)$. Thus, ν is a Borel measure.

Now, we verify that ν is a Radon measure.

(1) Since $\phi \in L^1(\mu)$ and $\phi > 0$, ν is finite on any Borel sets, hence, compact sets.

(2) Let $E \in \mathcal{B}_X$. Let $\varepsilon > 0$. By Corollary 3.6 (which states that $\int \phi \, d\mu$ is absolutely continuous on A), $\exists J > 0$ s.t. $\int_A \phi \, d\mu < \frac{\varepsilon}{2}$ if $A \in \mathcal{B}_X$ and $\mu(A) < J$.

Let \(A_k = \left\{ \frac{1}{k} \leq \phi \leq 2k \right\} \) \((k = 1, 2, \ldots)\). Then \(A_k \subseteq B_\infty \) and \(A_k \uparrow \{ \phi > 0 \} \). By the monotone convergence theorem, \(\nu(A_k \cap E) = \int \phi K_{A_k \cap E} \, dm \to \int \phi K_{\{ \phi > 0 \} \cap E} \, dm \)

\[= \int \phi \, dm = \nu(E) \]

Thus, \(\exists N \) s.t. \(\nu(A_N \cap E) > \nu(E) - \frac{\epsilon}{2} \).

Since \(\nu(A_N \cap E) \leq \nu(A_N) \leq \int 2N \phi \leq 2N \int \phi \, dm < \infty \), \(\nu \) is regular at \(A_N \cap E \). Thus, \(\exists K \subseteq \text{compact}, K \subseteq A_N \cap E \subseteq E \), s.t. \(\nu(K) > \nu(A_N \cap E) - \frac{\epsilon}{2} > \nu(E) - \frac{\epsilon}{2} > \nu(E) - \epsilon \). Hence, \(\nu \) is inner regular at \(E \) (any \(E \subseteq B_\infty \), not necessary open).

(3) If \(E \subseteq B_\infty \) then \(E^c \subseteq B_\infty \). By (2), \(\nu \) is inner regular at \(E^c \). Thus, \(\forall \epsilon > 0, \exists \text{ compact } F \subseteq E^c \) s.t. \(\nu(F) > \nu(E^c) - \epsilon \). Let \(U = F^c \). Since \(F \) is compact, it is closed. So, \(U = F^c \) is open. Since \(F \subseteq E^c \), \(U = F^c \supseteq E \).

Moreover, \(\nu(U) = \nu(F^c) = \nu(X) - \nu(F) < \nu(X) - \nu(E^c) + \epsilon = \nu(E) + \epsilon \). Thus, \(\nu \) is outer regular at \(E \).

Hence (1) - (3) \(\Rightarrow \nu \) is a Radon measure.
We show now \(\text{Supp}(\phi) \subseteq \text{Supp}(\Psi) \cap \text{Supp}(\mu) \).

Equivalently, \((\text{Supp}(\Psi))_c \supseteq (\text{Supp}(\phi))_c \cup (\text{Supp}(\mu))_c \).

Let \(U = (\text{Supp}(\phi))_c \). Then \(U \) is open, and \(\phi = 0 \) on \(U \).

So, \(\nu(U) = \int \phi \, du = 0 \). Thus, \(U \subseteq (\text{Supp}(\Psi))_c \).

Similarly, let \(V = (\text{Supp}(\mu))_c \). Then \(V \) is open, and \(\mu(V) = 0 \). Thus \(\nu(V) = \int \phi \, du = 0 \).

Hence \(V \subseteq (\text{Supp}(\phi))_c \).

5. We show that \(\delta_{x_0} \) is a Radon measure. Clearly, it is a Borel measure. It is a finite measure, so it is finite on compact sets. Let \(E \subseteq \mathbb{R}^d \). If \(x \notin E \) then \(\delta_{x_0}(E) = 1 \). If \(U \) is open and \(E \subseteq U \) then \(\delta_{x_0}(U) = 1 \). Hence, \(\delta_{x_0} \) is outer regular. If \(x \notin E \), then \(\delta_{x_0}(E) = 0 \). For the open set \(U = X \setminus \{x_0\} \),
we have \(E \subseteq U \) and \(\mathcal{S}(U) = \emptyset \). Thus, \(\mathcal{S} \) is also outer regular at \(E \). Finally, let \(U \) be open if \(x \in U \). Then \(\mathcal{S}(U) = 1 \). Also, \(K = \{x_0\} \) is compact and \(K \subseteq U \), \(\mathcal{S}(K) = 1 \). Thus, \(\mathcal{S} \) is inner regular at \(U \).

If \(x \notin U \), \(\mathcal{S}(U) = 0 \). If \(K \subseteq U \), \(K \) is compact, then \(x \notin K \), so \(\mathcal{S}(K) = 0 \). Hence, \(\mathcal{S} \) is inner regular at \(U \).

Thus, \(\mathcal{S} \) is inner regular at open sets, and therefore \(\mathcal{S} \) is a Radon measure.

\[
\forall f \in C_c(X) \; \int f \, d\mathcal{S} = \int f(x_0) \, d\mathcal{S}_{\{x_0\}} = f(x_0) \, \mathcal{S}(\{x_0\}) = f(x_0) = I(f).
\]

By the uniqueness in the Riesz Representation Theorem, \(\mathcal{S} \) is the Radon measure associated with the functional \(I \).
6. Let $K = \text{supp}(\mu)$. K is a closed subset of X. Since X is compact, K is compact. Moreover, $\mu(K^c) = 0$. Hence $\mu(K) = \mu(K) + \mu(K^c) = \mu(X) = 1$.

Let H be a compact subset of X. Assume $H \not\subseteq K$ (i.e., $H \subseteq K$ but $H \neq K$). Then $\exists x \in K \setminus H$. In particular, \exists open sets U and V s.t. $x \in U$, $H \subseteq V$, and $U \cap V = \emptyset$. (See Proposition 4.23.) Since $x \in K = \text{supp}(\mu)$, $\mu(U) > 0$. [Otherwise $U \subseteq \text{supp}(\mu)^c$ and $x \notin U$.] Since $\mu(K) = 1$, $\mu(U \cup K) = \mu(U) > 0$. [$1 = \mu(X) \geq \mu(U \cup K) \geq \mu(K) = 1 \implies \mu(U \cup K) = 1$. But $\mu(U) + \mu(K) = \mu(U \cup K) + \mu(U \cup K)$. So, $\mu(U \cup K) = \mu(U) > 0$.] Since $H \cup (U \cup K) \subseteq K$ and $H \cap (U \cup K) = \emptyset$, we have $\mu(H) + \mu(U \cup K) \leq \mu(K) = 1$. $\mu(H) \leq 1 - \mu(U \cup K) < 1$.
7. Let \(\mu \) be a Borel measure on \(\mathbb{R}^n \), which is an LCH space. Assume \(\mu \) is a Radon measure. Then by definition \(\mu \) is finite on compact sets. Conversely, assume that \(\mu \) is finite on all compact subsets of \(\mathbb{R}^n \). If \(U \neq \emptyset \) is an open subset of \(\mathbb{R}^n \), then it is the countable union of compact sets \(\overline{B(x, \varepsilon)} \), where \(x \in U \), \(\varepsilon \in (0, \infty) \cap \mathbb{Q} \), and \(B(x, \varepsilon) = \{ y \in \mathbb{R}^n : |y - x| < \varepsilon \} \) such that \(\overline{B(x, 2\varepsilon)} \subset U \). Thus, by Theorem 7.8, \(\mu \) is a Radon measure.