1. Let X and Y be locally compact Hausdorff spaces. Let μ and ν be Radon measures on X and Y, respectively. Assume $f \in C_c(X \times Y)$. Prove that the functions

$$x \mapsto \int_Y f_x(y) d\nu(y) \quad \text{and} \quad y \mapsto \int_X f_y(x) d\mu(x)$$

are continuous functions on X and Y, respectively.

2. Let X and Y be locally compact Hausdorff spaces. Let μ and ν be Radon measures on X and Y, respectively. (They are not necessary σ-finite.) Assume $f : X \times Y \to \mathbb{R}$ is nonnegative lower semi-continuous. Prove that the functions

$$x \mapsto \int_Y f_x(y) d\nu(y) \quad \text{and} \quad y \mapsto \int_X f_y(x) d\mu(x)$$

are Borel-measurable functions on X and Y, respectively, and

$$\int \int f \, d(\hat{\mu} \times \nu) = \int \int f \, d\mu \, d\nu = \int \int f \, d\nu \, d\mu.$$