Longo: Math IOB - Winter 2017 Lecture Notes

Date: March IO, 2017

Section:
\square §9.2

Topics Covered:
Geometric series
§9.2: Geometric series:
Whenever we have a sequence of numbers: $a_{1}, a_{2}, a_{3}, \ldots$ where each a_{i} is a number, we can form a series by adding them all up: $a_{1}+a_{2}+a_{3}+\ldots$

Each $a:$ is called the $i^{\text {th }}$ term. Even though we may be adding infinitely many terms, the resulting sum could be finite.

Example: (1) $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots$
in Sigma notation $\sum_{i=1}^{\infty}\left(\frac{1}{2}\right)^{i}$.
We saw earlier in the class that this Series is equal to 1 .
(2) $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots$
it turns out this series is infinite (i.e., it diverges!)
Why? $\begin{aligned} 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\ldots & >1+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\right)+\ldots \\ & =1+\frac{1}{2}+\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)+\end{aligned}$ $=1+\frac{1}{2}+\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)+\ldots$.
You can always collect enough terms to mack $\frac{1}{2}$, so the Series is $>1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\cdots$, which is clearly it finite.
(3) $3+6+12+24+48+\ldots=(3)\left(2^{2}\right)+(3)\left(2^{2}\right)+(3)\left(2^{2}\right)+\ldots$

In sigma notion: $\sum_{i=0}^{\infty} 3(2)^{i}$.
This series is clearly infinite.

Examples (1), (3) are a special type of series called geometric series. (2) is called harmonic. In this class we will focus on geometric series and Taylor Series (meet weak).

Definition: Let a, r be real numbers. A finite geometric sequence is a sequence of th form

$$
\sum_{i=0}^{n} a \cdot r^{i}=a+a r+a r^{2}+a r^{3}+\ldots+a r^{n}
$$

An infinite geometric sequence is one of the form

$$
\sum_{i=0}^{\infty} a r^{i}=a+a r+a r^{2}+a r^{3}+\ldots
$$

Warning: It is possible that an infinite geometric sequencer is ∞. We will soon determine exactly when a geometric sequence converges.

Example: Compute the finite geometric sequence

$$
\begin{aligned}
\sum_{i=0}^{4} 96\left(\frac{1}{2}\right)^{i} & =96+96\left(\frac{1}{2}\right)^{1}+96\left(\frac{1}{2}\right)^{2}+96\left(\frac{1}{2}\right)^{3}+96\left(\frac{1}{2}\right)^{4} \\
& =96+96\left(\frac{1}{2}\right)+96\left(\frac{1}{4}\right)+96\left(\frac{1}{8}\right)+96\left(\frac{1}{16}\right) \\
& =96+48+24+12+6 \\
& =186
\end{aligned}
$$

Problem We obviously don't want to have to do this calculation over and over again. Is there a better way?

Formula for finite geometric series'

Suppose a, and r are given. For any positive whole number n, let
$S_{n}=a+a r+a r^{2}+\ldots+a r^{n-1}$ be the sum of the first n terms. We will use a telescoping sum trick. Notice that:

$$
\begin{aligned}
r \cdot S_{n} & =r\left(a+a r+a r^{2}+\ldots+a r^{n-1}\right. \\
& =a r+a r^{2}+a r^{3}+\ldots+a r^{n} . \\
\Rightarrow \quad S_{n}-r S_{n} & =\left(a+a r+a r^{2}+\ldots+a r^{n-1}\right)-\left(a r+a r^{2}+\ldots+a r^{n-1}+a r^{n}\right) \\
& \left.=a+a r+a r^{2}+\ldots+a r^{n-1}\right)-a r-a r^{2}-\ldots-a r^{n-1} a r^{n} \\
& =a+(a r-a r)+\left(a r^{2}-a r^{2}\right)+\ldots+\left(a r^{n-1}-a r^{n-1}\right)-a r^{n} \\
& =a-a r^{n} \\
& =a\left(1-r^{n}\right) .
\end{aligned}
$$

Now if we solve for S_{n} :

$$
\begin{array}{ll}
& S_{n}-r S_{n}=a\left(1-r^{n}\right) \\
\Rightarrow & S_{n}(1-r)=a\left(1-r^{n}\right) \\
\Rightarrow \quad & S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}
\end{array}
$$

Examples: (1) From before:

$$
S_{5}=\sum_{i=0}^{4} 96 \cdot\left(\frac{1}{2}\right)^{i}=96+48+24+12+6
$$

Here, $n=5, a=96, r=\frac{1}{2}$. So by the formula,

$$
\begin{aligned}
S_{5}=\frac{96\left(1-\left(\frac{1}{2}\right)^{5}\right)}{1-\frac{1}{2}}=\frac{96\left(1-\frac{1}{32}\right)}{\frac{1}{2}} & =96\left(\frac{\frac{31}{32}}{\frac{1}{2}}\right) \\
& =96\left(\frac{31}{16}\right)=186
\end{aligned}
$$

(2) $2+6+18+54+164+486$.

Let's first find r and a. Note that in a geometric Series, the $i^{\text {th }^{r}}$ term is $a r^{i}$ and the $i-1^{\text {th }}$ term is $a r^{i-1}$. If we divide any term by the one before it, we get

$$
\frac{a r^{i}}{\Delta r^{i-1}}=\frac{r^{i}}{r^{i-1}}=r
$$

For this reason, r is called the common ratio. In the above series, we have

$$
\frac{486}{164}, \frac{164}{54}, \frac{54}{18}, \frac{18}{6}, \frac{6}{2} \text { all equal } 3 \text {. }
$$

\therefore we have $r=3$, and $a=2$ ($\frac{\rho}{1}$ irst term). and $n=6$ (number of terms)

$$
\Rightarrow \quad S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{2\left(1-3^{6}\right)}{-2}=-\left(1-3^{6}\right)=728
$$

Evaluating infinite geometric series.
Let a, r be given. Then the infinite series $a+a r+a r^{2}+a r^{3}+\ldots$ is equal to $\lim _{n \rightarrow \infty}\left(S_{n}\right)$ because we are just adding infinitely many terms.
On the other hand, we know $S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$.

$$
\Rightarrow a+a r+a r^{2}+\ldots=\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \frac{a\left(1-r^{n}\right)}{1-r}
$$

This limit completely depend on what happen to r^{n} as $n \rightarrow \infty$.
Certain if $|r|>1$, then $\left|r^{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$.
if $|r|<1$, then $\left|r^{n}\right| \rightarrow 0$ (e.g., $\lim _{n \rightarrow \infty}\left(\frac{1}{2}\right)^{n}=0$).
Therefore:,
Thai (1) If $|r| \geqslant 1 \quad a+a r+a r^{2}+\ldots=\lim _{n \rightarrow \infty} \frac{a\left(1-r^{n}\right)}{1-r}$ is not
finite since the limit DNE. In this case, we say the geometric series diverges.
(2) If $|n|<1$,

$$
a+a r+a r^{2}+\ldots=\lim _{n \rightarrow \infty} \frac{a\left(1-r^{2}\right)}{1-r}=\frac{a}{1-r}
$$

What happens if $|r|=1$? The $r= \pm 1$ and the series turns into $\quad a+a(1)+a(1)^{2}+\ldots=a+a+a+\ldots= \pm \infty$ (diverges)
or

$$
\begin{gathered}
a+a(-1)+a(-1)^{2}+a(-1)^{2}+\ldots \\
=a-a+a-a+a-a \pm \ldots
\end{gathered}
$$

In this case, the series oscillates between a and 0 as you add more terms. Since it docent "Settle dom", we soy it diverges.

Ex: (1) $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots$.
Here, $a=\frac{1}{2}$ (first term)
$r=\frac{1}{2}$ (common. ratio)
Since $|r|<1$, the series is finite and equal

$$
\frac{a}{1-r}=\frac{\frac{1}{2}}{1-\frac{1}{2}}=\frac{\frac{1}{2}}{\frac{1}{2}}=1 \quad\binom{\text { see notes }}{\text { from 2-13! }}
$$

(2) $\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\cdots$

Here, $\quad a=\frac{1}{2}$

$$
r=-\frac{1}{2} \text {, so } \quad \frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\ldots=\frac{\frac{1}{2}}{1-\left(-\frac{1}{2}\right)}=\frac{\frac{1}{2}}{\frac{3}{2}}=\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)=\frac{1}{3}
$$

