Name							Total			Section Time
Scores:	1	2	3	4	5	6	7	8	9	

Calculus 10C, Spring 2008, Lecture B, Final Exam

Three hour exam. You will get full credit only if you show all your work clearly. No calculators are allowed.

1. Let $z=\sin (x / y)$ and let $x=\ln u$ and $y=v^{4}$. Compute the partial derivatives $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$.
2. Compute the fourth order Taylor polynomial, at $x=0$, for the function $f(x)=\frac{1}{1+x}$.
3. Let $f(x, y)=\sqrt{2 x-y}$. Find the quadratic Taylor approximation to f at the point $(3,5)$.
4. Compute the directional derivative of the function $f(x, y)=x e^{-4 y}$, at the point $(3,0)$, in the direction of the vector $4 i-3 j$.
5. Find the equation of the plane passing through the three points $(2,1,0),(0,1,3)$ and $(1,0,1)$.
6. Find a vector normal to the surface $x y+x z+y z=11$ at the point $(1,2,3)$.
7. Let $f(x, y)=\sqrt{\cos x+\sin y}$. Use the linear approximation to $f(x, y)$ near $(0,0)$ to approximate $f(0.01,0.04)$.
8. Let $f(x, y)=x^{2}+y^{3}-3 x y$. Find the critical points of f and decide whether each is a local maximum, minimum or saddle point.
9. Use the method of Lagrange multipliers to find the maximum value of $f(x, y)=4 x-3 y$ subject to the constraint $x^{2}+y^{2}=4$.
