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1. Introduction

Let G be a finite graph and let V (G) be its vertex set. For a subset X of the vertices of G define

∂(X) := {y ∈ V (G)|∃x ∈ X such that x is connected to y}
to be the boundary of X. Define the Cheeger constant, h(G), of G by

h(G) = min
X⊂V (G),2|X|≤|V (G)|

|∂(X)|
|X|

.

If ε is a positive constant, a family of graphs {Gi}i∈I is called a family of ε-expanders if infi∈I h(Gi) >
ε. That is, if the Cheeger constants h(Gi) are uniformly bounded away from zero by ε.

Historically, explicit examples of families of expander graphs have been difficult to construct.
The earliest constructions arose as Cayley-Schreier graphs of lattices of Lie groups of higher rank.
Let us state the following definitions:

Definition 1 (Cayley-Schreier Graphs). Let G be a finite group, H a subgroup of G, and Ω a
symmetric subset of G. The Cayley-Schreier graph of G with respect to H and Ω, Sch(G,H,Ω),
is defined to be the graph whose vertices coincides with the coset space G/H where the vertices gH
and g′H are connected exactly when there exists an element ω ∈ Ω with gH = ωg′H. The Cayley
graph of G with respect to Ω, Cay(G,Ω), is defined to be Sch(G, 〈id〉,Ω).

Definition 2 (Kazhdan’s Property (T)). Let Γ be a discrete group and Ω ⊂ Γ be a set of generators.
Γ is said to have Kazhdan Property (T) if there exists a constant ε > 0 with the following
property. For any unitary representation ρ : Γ → U(H) with no nonzero fixed vectors from Γ into
the group of unitary operators of a Hilbert space H, and for any nonzero vector v ∈ H, there exists
ω ∈ Ω such that

‖ρ(ω)v − v‖ ≥ ε‖v‖.

In 1973 ([16]), Margulis proved that if Γ = 〈Ω〉 is a group with Kazhdan property (T), then the
family of Cayley graphs

{Cay(Γ/Ni,ΩNi/Ni)}NiCΓ, [Γ:Ni]<∞
is a family of ε-expander graphs for some ε > 0. This, combined with Kazhdan’s 1967 result which
states that any lattice Γ in a simple Lie group of real rank at least 2 has property (T) ([11]), gave
us a fairly rich source of examples.

The question then became: “What can we say about the rank 1 case?” Selberg’s theorem implies
([22]) that if Ω ⊂ SL2(Z) is a finite symmetric subset which generates a finite index subgroup of
SL2(Z), then there exists a positive number ε such that the family of graphs

{Cay(SL2(Fp)), πp(Ω))}p prime

is a family of ε > 0-expander graphs where

πp : Z→ Z/pZ
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denotes the reduction modulo p map. Lubotzky questioned whether or not the result is true when
Ω generates a thin subgroup of SL2(Z), i.e., a subgroup of infinite index which is dense in the Zariski
topology. In particular, his famous “1− 2− 3 problem” asks if families of graphs

{Cay(SL2(Fp), πp(Ωi))}p>3 prime

form a families of expanders where

Ωi :=

{(
1 ±i
0 1

)
,

(
1 0
±i 1

)}
, i = 1, 2, 3.

Here Ω1 generates SL2(Z) while Ω2 generates a finite index subgroup. Ω3, however, generates a
thin subgroup of SL2(Z). This question was settled by Bourgain and Gamburd in 2008 [3] where
they showed that for a subset Ω of SL2(Z) the family of graphs

{Cay(SL2(Fp), πp(Ω)}p prime

is a family of expanders if and only if 〈Ω〉 is not virtually solvable. Their method of proof, the so
called “Bourgain-Gamburd Machine,” has since been used in [2], [4], [5], [6], [23], and finally in [20]
where the authors found necessary and sufficient conditions for such a contruction to yield a family
of expander graphs. Namely, they proved the following:

Theorem 3. Let Γ ⊂ GLd(Z[1/q0]) be the group generated by a symmetric set Ω. Then

{Cay(Γ/Γ(q),ΩΓ(q)/Γ(q)},
where Γ(q) := Ker(Γ → Γ(mod q)) is the kernel of the reduction modulo q map, is a family of
expander graphs as q ranges over the square free integers coprime to q0 if and only if the connected
component of the Zariski-closure of Γ is perfect.

This type of result has come to be known as “superstrong approximation” as it strengthens
the idea of strong approximation in the sense of [18, Ch. 7]. Its applications in mathematics
have proven to be deep and diverse; including: Appolonian circle packing, homogeneous dynamics,
Zaremba’s conjecture, and affine sieving (see [8] for an overview).

To date, not much has been shown for the analogous “superstrong approximation” question in
positive characteristic.

2. Results

We consider the following question which is a positive characteristic variation of the main result
in [20]. Let p be a prime number, Fp[t] be the ring of polynomials with coefficients in Fp, and Fp(t)
its field of fractions. Let Ω be a finite symmetric subset of GLn(Fp(t)). Since |Ω| <∞, there exists a
common denominator Q0 of the entries of the matrices in Ω and we see that Ω ⊂ GLn(Fp[t, 1/Q0]).

Let Γ = 〈Ω〉 be the group generated by Ω, and G := Γ
Zar.

be the Zariski-closure of Γ. For a
polynomial Q ∈ Fp[t] coprime to Q0, let

πQ : Fp[t, 1/Q0]→ Fp[t, 1/Q0]/(Q) = Fp[t]/(Q)

be the “reduction modulo Q” map. This gives rise to a homomorphism

πQ : Γ→ GLn(Fp[t]/(Q)).

Under these assumptions, what conditions are necessary and sufficient for the family of Cayley
graphs

{Cay(πQ(Γ), πQ(Ω))}Q∈Fp[t], Q square free, (Q,Q0)=1

to be a family of ε−expander graphs for some ε > 0?
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The hope is that we have expanders if and only if the connected component of G is perfect, as
is the case in characteristic zero. However, there are certain difficulties here that do not appear in
characteristic zero, and so the previous techniques fall short. Despite these difficulties, we do have
a result which holds under some additional assumptions. We first introduce some notation.

Let P ⊂ Fp[t] be the set of all irreducible polynomials in Fp[t] and Σ be the set of all square free
polynomials in Fp[t] with the property that no two irreducible factors of any polynomial Q ∈ Σ
have the same degree. For any constant c, let Pc (resp. Σc) be the set of polynomials in P whose
degrees have no divisors less than c (resp. square free polynomials in Σ whose irreducible factors
lie in Pc). We have the following:

Theorem 4 (L., Salehi Golsefidy (2015)). Let p, Ω, Γ, G and Q0 be as above. Assume p ≥ 5 and
G is absolutely almost simple and simply connected. Assume further that the ring generated by the
set Tr(Ad(Γ)) is all of Fp[t, 1/Q0]. Assume pri(Γ) is Zariski-dense in Gi for all i. Then there exist
positive constants c and ε such that the family of graphs,

{Cay(πQ(Γ), πQ(Ω)}Q∈Σc, (Q,Q0)=1,

forms a family of ε-expander graphs.

I’ll now give a brief explanation of the proof and describe where the difficulties lie. Let

µ(γ) :=

{ 1
|Ω| if γ ∈ Ω

0 if γ 6∈ Ω

be the uniform probability measure on Γ supported by Ω and for each polynomial Q ∈ Fp[t] let πQ[µ]
be the induced probability measure on πQ(Γ). For any probability measure ν on a group G, we

denote by ν(`) the ` fold convolution of ν with itself. In our proof, we follow the so called “Bourgain-
Gamburd machine” which was first used in the proof of the main theorem in [3]. The machine has
three main components. First, one must show that a random walk on Cay(πQ(Γ), πQ(Ω)) has an
exponentially small chance of landing in any coset of a proper subgroup of πQ(Γ). Applying this fact

to the trivial subgroup gives us a nice upper bound on the `2 norm on πQ[µ](l) for l ∼ log|πQ(Γ)|.
Next, one shows that we can convolve πQ[µ](l) with itself a finite number of times independent of
Q so that the resulting measure is very close to equidistribution in the `2 norm. Finally, one must
use the technique of Sarnak and Xue which first appeared in ([21]) in which one calculates a trace
formula and exploits the fact that the groups πQ(Γ) are c-quasirandom in the sense of Gowers [9]
for some constant c which does not depend on Q to achieve a uniform upper bound for the second
largest eigenvalue in the spectrum of the adjacency matrices of the Cayley graphs. This was shown
in ([1]) to be an equivalent condition for the family of graphs to be an expanding family.

There are two key differences in our problem compared to the previous work in characteristic
zero: the subgroup structure of the groups πQ(Γ) and the fact that representations of G are not
necessarily completely reducible. By the Strong Approximation Theorem ([24, Thm. 0.6]), we have
that if Q is square free and coprime to Q0, and if deg(P ) is sufficiently large for every prime factor
P of Q, then

πQ(Γ) = GQ(Fp[t]/(Q))

and

GQ(Fp[t]/(Q)) = ΠP |QGP (Fp[t]/(P ))

where GQ (resp. GP ) are the group schemes obtained from G by reducing the polynomials which
define G as a variety modulo Q (resp. P ). Therefore in order to understand the subgroup structure
of πQ(Γ), we must understand subgroups of GP (Fp[t]/(P )) = GP (FpdegP ).
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In the characteristic zero case, one only needs to consider the subgroup structure of the Fp = Z/pZ
points of an algebraic Fp-ssubgroup of GLn. The structure of such subgroups is fully described by
Madhav Nori in [17] where it is shown that every subgroup can be approximated by the Fp points
of a proper algebraic subgroup. For larger fields, the correct classification is given by Larsen and
Pink in [12]. As a corollary of their work we show that if G0 is an absolutely almost simple group
of adjoint type defined over a finite field Fq and if H ⊂ G0(Fq) is a maximal proper subgroup then
either there exists a proper algebraic subgroup H of G0 defined over the algebraic closure of Fq with
H ⊂ H, or there exists a subfield Fq′ and a model G1 of G0 defined over Fq′ (i.e., G1⊗Fq′ Fq = G0)

with

[G1(Fq′) : G1(Fq′)] ⊂ H ⊂ G1(Fq′)

where G1 is a model of G0 over a some subfield Fq′ of Fq. Subgroups of the former type are called
structural subgroups while subgroups of the latter type are called subfield type subgroups. In an
attempt to establish the first step of the “Bourgain Gamburd Machine” we show that if a subgroup
H ⊂ GQ(Fp[t]/(Q)) has the property that if the image of H in GP (FpdegP ) for each divisor P of
Q is a structural subgroup, then contained in a maximal algebraic subgroup of G. By using an
effective Nullstellensatz argument we show that the set

Lδ(H) := {h ∈ G(Fp[t, 1/Q0]) | πP (h) ∈ H and ‖h‖ < [G : H]δ

of “small lifts” of πP (H) is contained in a proper algebraic subgroup of G and we can bootstrap
this argument to show that the set of “small lifts” of H is contained in a proper algebraic subgroup
of G. Then, we construct a finite set of irreducible representations of G with the property that any
algebraic subgroup H of G fixes a line in at least one of these representations. It is clear that for any
algebraic subgroup H of G, the line spanned by ∧dimHh in ∧dimHg is stable under ∧dimH AdH but
not all of ∧dimH AdG. Unfortunately the representation ∧dimH Ad is not completely irreducible
since G is defined over a field of positive characteristic. Nevertheless, using the classification
of irreducible representations of reductive groups given in [10] we show that one of the irreducible
subquotients of a composition series of ∧dimHg has the desired property. We then use a “ping-pong”
argument to show that the probability that a word of length l log |πQ(Γ)| has an exponentially
small chance of fixing a line in any of these representations and therefor the chance of landing in a
subfield type subgroup after a random walk on Cay(πP (Γ), πP (Ω)) is exponentially small.

Since the trivial subgroup is clearly of structural type, we already get a nice bound on the `2-
norm of πQ(µ). By adapting the proof of Varjú in [23], I show that second step of the “Bourgain-
Gamburd” machine holds so long as the degrees of our polynomials have no small divisors. The idea
is that if we cannot get the `2-norm of πQ(µ) to “flatten out” in finitely many steps, then the results
of [7], [19], and [3] imply that the measure must concentrate on a coset of a large proper subgroup.
The measure cannot concentrate on a coset of a proper structural subgroup since that contradicts
what we have already shown. Therefore it must concentrate on a coset of a large subgroup whose
image in πP (Γ) is structural for some divisor P of Q. However, the restrictions on the degrees
of the divisors of Q guarantee that no such subgroup exists. Finally due to [13], we can use the
trick of Sarnak and Xue to achieve a uniform bound on the second largest eigenvalues of the linear
operators

TπQ[µ] : L2(GQ(Fp[t]/(Q)))→ L2(GQ(Fp[t]/(Q))),

f 7→ πQ[µ] ∗ f,

which shows that the Cayley graphs indeed form a family of expander graphs.
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3. Future Directions

My studies have been focused on the theory of “superstrong approximation” in algebraic groups
(mainly in positive characteristic). I am interested and willing to study any topic related to algebraic
groups. In this section I will focus on my ambitions in “superstrong approximation.”

Expansion Without Condition. My immediate research goal is to try to strengthen the result
of Theorem 4. I would like to prove the following

Question 1. If Ω, Γ, and G are as in the hypothesis of Theorem 4, then is the family of graphs

{Cay(πQ(Γ), πQ(Ω))}Q square free, (Q,Q0)=1

a family of ε-expander graphs for some ε > 0?

I plan on attacking this problem in two steps. The core of the issue is that I currently do not
know how to “escape” from proper subfield type subgroups after a random walk of degP steps
on the Cayley graph Cay(πP (Γ), πP (Ω)) for P irreducible and coprime to Q0. A second issue that
the process of bootstrapping the problem of “escaping” proper subgroups of πQ(Γ) for Q square
free and coprime to Q0 from the irreducible case is hindered by the existence of certain diagonal
subgroups. For example if P1 and P2 are irreducible or the same degree, then there exists an
isomorphism

α : GP1(Fp[t]/(P1))→ GP2(Fp[t]/(P2))

and a subgroup

H := {(g, α(g)) : g ∈ GP1(Fp[t]/(P1))} ⊂ G(Fp[t]/(Q)).

Since the projection to each factor is surjective, I can’t use the same argument as before to show
that these subgroups can be avoided. I do believe that if I can show that we can “escape” from
subfield type subgroups, then I should be able to settle this second issue.

I plan on attacking this problem in two steps. First I want to formulate a precise conjectural
statement that we can “escape” from proper subfield type subfield subgroups of πP (Γ) for P ∈ Fp[t]
irreducible and coprime to Q0, and use this statement to prove that we can “escape” from these
diagonal subgroups of πQ(Γ) for Q square free, coprime to Q0. Once this has been shown, I will
then try to prove the conjecture on “escaping” from subfield type subgroups. In order to do this I
need to learn more aout the “small lifts” of elements in a subfield type subgroup.

After this I would like to try to get a similar result when the Zariski-closure of Γ is semisimple.

Question 2. Let p ≥ 5 be a prime number, Ω ⊂ GLn(Fp[t, 1/Q0]) be a finite symmetric set,
Γ = 〈Ω〉, and G be the Zariski-closure of Γ. Suppose G is semisimple and simply connected and

let pri : G → Gi be the projection of G onto its ith almost simple factor. Assume that pri(Γ) is
Zariski dense for all i and that the ring generated by Tr(pri(Ad Γ))) is all of Fp[t, 1/Q0]. Then is
the family of graphs

{Cay(πQ(Γ), πQ(Ω))}Q∈Fp[t] square free, (Q,Q0)=1

a family of ε-expanders for some ε > 0?

A large portion of our proof still works in this setting so I suspect this question of reasonable.
Aside from these questions, it may also be reasonable to answer the analogous positive charac-

teristic version of the work of [6]. Namely, can we take the reduction mod Pn map were P is a
fixed irreducible polynomial in Fp[t] and n ranges through the positive integers. A modest start
would be the following
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Question 3. Let Ω be a finite symmetric set of SL2(Fp[t]) which generates a Zariski-dense subgroup
Γ. Then is the family of graphs

{Cay(πtn(Γ), πtn(Ω))}n≥1

a family of ε-expander graphs for some ε > 0?

Applications of expansion in positive characteristic. As I mentioned in the introduction,
“superstrong approximation” in characteristic zero has found many applications. I would like to
explore whether or not these applications have positive characteristic analogs. One immediate
application is Lubotzky and Meiri’s “Large Group Sieve” [14]. I would like to modify their proof
to solve the following

Question 4. Let Γ be a finitely generated subgroup of GLn(Fp(t)) which is not virtually-solvable.
Then is the set of proper powers ∪m≥2,p-mΓm is exponentially small in Γ?

Here, exponentially small means that if Ω is any generating set of Γ then the probability that a
word of length k in the alphabet Ω is exponentially small in k. A positive solution to Question 1
will imply a positive solution to Question 4 with a bit of work. Similarly by using the “Large Group
Sieve”, a positive solution to Question 1 would lead to a positive analog to the main theorem in
[15].
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