# Longo: Math 20C - Winter 2017 Lecture Notes 

Date: January II, 2017

## Section:

§ I.I (cont.)
§ I. 2

Topics Covered:
Special vectors
Equations of lines in 3 -space
Dot product of vectors (also called inner product)

From last time:
A vector in $\mathbb{R}^{2}$ (resp. $\mathbb{R}^{\prime}$ ) is a directed line segmat in 2-space (resp. 3-space). Two vectors are equitant if they are translates of eachathor. This meas we only really care about the length and direction of a vector.
Special Vectors.
The following vectors are especiAlly important:
(1) The zero vector, $\vec{O}$, is the vector that starts and ends at the origin. $\vec{O}$ is the all vector of length zeno. In $\mathbb{R}^{2}, \overrightarrow{0}=(0,0)$ in $\mathbb{R}^{\prime}, \overrightarrow{0}=(0,0,0)$.
Remark: If $\vec{v}$ is any vector, $\begin{aligned} & \overrightarrow{0}+\vec{v}=\vec{v} \\ & \vec{v}+\vec{a}=\vec{v} .\end{aligned}$
(2) The vector $\vec{i}$ is the vector of length 1 that pats in the positive $x$-directia
$\vec{i}-(1,0)$ in $\mathbb{R}^{2}$ and $\vec{i}=(1,0,0)$ in $\mathbb{R}^{3}$.
(3) The vector $\vec{j}$ is the vector of length 1 that pats in the positive $y$-direction
$\vec{j}=(0,1)$ in $\mathbb{R}^{2}$ and $\vec{j}=(0,1,0)$ in $\mathbb{R}^{3}$.
(4) The vector $\vec{k}$ is the vector of length 1 that pats in the portive $z$-directia $\vec{k}=(a, t, 1)$.


$\vec{i}, \vec{j}, \vec{k}$ are important beca-k any vector can be exposed in terms of $\vec{i}, \vec{j}, \vec{k}$.

Ex: (1) $(-1,3)=(-1,0)+(0,3)=-1(1,0)+3(0,7)$

$$
=-\vec{i}+3 i
$$

(2) $(6,-2,4)=6(1,0,0)-2(0,1,0)+4(0,0,1)=6 \vec{i}-2 \vec{j}+4 k$
$\vec{i}, \vec{j}, \vec{k}$ are called the standard basis vectors.
Equations of lines in 3-space:
You know that in $\mathbb{R}^{2}$. you can find the equation of a line if you know: (1) a point, $(x, y)$, on the live, and
(2) The slopes, (direction of the line).

Then we can use the pont-slape form:

$$
\left(y-y_{1}\right)=m\left(x-x_{1}\right)
$$

We do something similar in 3 -spice.
Suppose you know a point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ on a line, and a vector $\vec{d}=(a, b, c)$ that is parallel to the lime.


vector form

If $(x, y, z)$ is any other point on the line, we can write $(x, y, z)=\overrightarrow{O P}_{0}^{\prime}+t \vec{d}$ for some red number $t$.

So any point on the line has the form $\overrightarrow{O D}+t \vec{d}$ for some $t$. We say the lime can be described paramekcotly with parameter $t$, by

$$
\begin{aligned}
\vec{\ell}(t) & =\overrightarrow{O P}+t \vec{d} \\
& =\left(x_{0}, y_{0}, z_{0}\right)+t\left(a, b_{1} c\right) \\
& =\left(x_{0}+t a, y_{0}+t_{0}, z_{0}+t c\right)
\end{aligned}
$$

Equivalently, the line is described by the parametric equatias:

$$
\begin{aligned}
& x=x_{0}+t a \\
& y=y_{0}+t b \\
& z=z+t c
\end{aligned}
$$

Examples: (1) Find the line passing throng $(0, q,-1)$ that is partial to the vector $(6,-2,-1)$.
(2) Find the eau of th line passing though $(0,9,-1)$ ad $(-1,-1,1)$.
(3) When e do the lines $\vec{l}(t)=(1,0,0)+t(2,-1,1)$, intersat?

Sol. (1) Here, $P_{0}=(0,9,-1), \vec{d}=(6,-2,-1)$ So the line is

$$
\begin{aligned}
& \vec{l}_{2}(t)=(3,- \\
& \vec{d}=(6,-2) \\
& +t(6,-2,-1)
\end{aligned}
$$

(2) Recall, we just nad any pint on the line, and a direction vector, $\vec{d}$.

Let's take $P_{0}=(-1,-1,1)$. For $\vec{d}$, we can use the vector from $(0,9,-1)$ to $(-1,-1,1)$.

$$
\stackrel{-}{(-1,-1,1)} \xrightarrow{(0,9,-1)}
$$

So take $\vec{d}=(0,9,-1)-(-1,-1,1)=(0+1,9+1,-1-1)=(1,10,-2)$ So we get $\vec{l}(t)=(-1,-1,1)+t(1,10,-2)$.
(3) If the two lines intersect, then the $x, y, z$ components must all be equal. So we set up the equations:

$$
(1,0,1)+t(2,-1,1)=(4,-3,0)+s(0,1,1)
$$

Rok: We must chase one of the $t^{\prime}$ 's to a different variole become they need not intersect at the same "input value".

So we have: (1) $1+2 t=4$
(1) $-t=-3+s$
(2) $1+t=s$

From equ (3) $s=1+t$, plug this into equ (2)

$$
\begin{array}{ll} 
& -t=-3+(1+t) \\
\Rightarrow & -2 t=-3 \\
\Rightarrow & t=\frac{3}{2}
\end{array}
$$

Play this back into (3):

$$
s=1+\frac{3}{2}=\frac{5}{2}
$$

So the $y$ and $z$ cords are equl when $t=\frac{3}{2}$ ad $s=\frac{5}{2}$. Lets play this back into en (1) to sea if the $x-c a+A_{s}$ ore quill:

$$
1+2\left(\frac{3}{2}\right) \stackrel{?}{=} 4 \quad \mathrm{~V}
$$

$\therefore$ They interest when sing $t=\frac{3}{2}$. (a $\left.s=\frac{5}{2}\right)$ we get $\left(1+2\left(\frac{3}{2}\right),-\frac{3}{2}, 1+\frac{3}{2}\right)=\left(4,-\frac{3}{2}, \frac{5}{2}\right)$
§1.2: The Inner Product:
So far, we discussed how to multiply a vector with a scar (real number). There are two useful wags to multiply two vectors (neither are what goo poshly expat). The fort way is called the "dot product", or, "inner prat".

Def: Let $\vec{u}=\left(x_{1}, y_{1}, z_{1}\right), \vec{v}=\left(x_{2}, y_{2}, z_{2}\right)$ be two vectors in $\mathbb{R}^{3}$. The dot produce' of $\vec{u}$ and $\vec{v}$, dented $\vec{u} \cdot \vec{v}$, is defined by $\vec{u} \cdot \vec{v}=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$

The dot product of two vestry in $R^{2}$ is the same, but yon don't include the $z$-components
Remark: (1) The dot product of two vectors is a number!
(2) The dot product has nice properties:

For vectors $i, \vec{v}, \vec{u}$, and a scalar $k$,
(i) $\vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u} \quad$ (commutativity)
(ii) $(k \vec{u}), \vec{v}=k(\vec{u}, \vec{v})=\vec{u} \cdot(k \vec{v})$
(iii) $\vec{u} \cdot(\vec{v}+\vec{w})=(\vec{u} \cdot \vec{v})+(\vec{u} \cdot \vec{u}) \quad$ (distribdetr.i.it)
! Warning! DO NOT FORGET THE DOT!! " $\vec{u} \vec{v}$ " has no meaning.

Example: ©Let $\vec{u}=(0,3,-1), \quad \vec{v}=(5,5,0)$.

$$
\begin{aligned}
\vec{u} \cdot \vec{u} & =(0)(5)+(3)(5)+(-1)(0) \\
& =15
\end{aligned}
$$

(2) Let $\vec{a}=(9,5), \vec{b}=(-5,9)$

$$
\begin{aligned}
\vec{a} \cdot \vec{b} & =(9)(5)+(-5)(9) \\
& =45-45 \\
& =0
\end{aligned}
$$

The dot product and length:
Q? If $\vec{u}=\left(x_{z}, y_{0}\right)$ is a veda in $\mathbb{R}^{2}$, what is the length of $\vec{u}$ ?
Natation: The length of a vector $\vec{u}$ is denoted, $\|\vec{u}\|$.
$\|\vec{a}\|$ is also called the norm or magnitude of $\vec{u}$

$$
\begin{aligned}
& y_{0} \mid \vec{v} \quad \text { Using Pythegorem thai: } \\
& \|\vec{u}\|^{2}=x_{0}^{2}+y_{0}^{2} \Rightarrow \\
& \|\vec{u}\|=-\sqrt{x_{0}^{2}+y_{0}^{2}}
\end{aligned}
$$

What about in $\mathbb{R}^{3}$ ?
Let $\vec{v}=\left(x_{0}, y_{a}, z_{1}\right)$.
We use Pythagorean Tim trice.


Now using the Pythigaren the on th orange, green, $l$. blue right triangle, we
get. $\quad\|\vec{v}\|^{2}=c^{2}+z_{0}^{2}$

$$
\|\vec{v}\|=\sqrt{x_{0}^{2}+y_{0}^{2}+z_{0}^{2}}
$$

Note that if we calculate:

$$
\vec{v} \cdot \vec{v}=\left(x_{0}, y_{0}, z_{-}\right) \cdot\left(x_{0}, y_{-}, z_{0}\right)=x_{0}^{2}+y_{-}^{2}+z_{0}^{2} .
$$

Therefore. $\quad\|\vec{v}\|^{2}=\vec{v} \cdot \vec{v} \quad$ (Important!)
Example: Find the magnitude of

$$
\vec{u}=(1,1,2), \quad \vec{v}=(6,-7)
$$

S. 1

$$
\begin{aligned}
& \|\vec{u}\|=\sqrt{(1)^{2}+(1)^{2}+(2)^{2}}=\sqrt{1+1+4}=\sqrt{6} \\
& \|\vec{v}\|=\sqrt{(6)^{2}+(-7)^{2}}=\sqrt{36+49}=\sqrt{85}
\end{aligned}
$$

Next time: (1) Cut vectors/Nomalizetion
(2) Geometry of the inner product \& Orthogonality.
(3) Orthogonal Projections.

