Sample Final 1 Solutions

B. M. Longo

March 14, 2017

1. In order to find the equation of any plane, we need a point, $P_{0}=$ $\left(x_{0}, y_{0}, z_{0}\right)$, on the plane, and a vector $\vec{N}=(a, b, c)$, that is normal to the plane. If we have these two pieces of information, then the equation of the plane is:

$$
a x+b y+c z=d
$$

where $d=\vec{N} \cdot \overrightarrow{O P_{0}}$.
For this problem, we can take $P=(1,1,1)$ to be the point on the plane since P is on the first line, and therefore it is on the plane. To find a vector that is orthogonal to the plane, we will first find two vectors parallel to the plane, and then take their cross product. Notice that the direction vector $\mathbf{d}=(1,2,3)$ is parallel to the plane, and the difference vector $\mathbf{u}=(1,2,3)-(1,1,1)=(0,1,2)$ is on the plane since this vector connects a point on line 1 to a point on line 2 (draw a picture to convince yourself why this works). Therefore, we take

$$
\mathbf{N}=\mathbf{d} \times \mathbf{u}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 2 & 3 \\
0 & 1 & 2
\end{array}\right|=(1,-2,1)
$$

Finally, we get the equation

$$
x-2 y+z=(1,-2,1) \cdot(1,1,1) \Longrightarrow x-2 y+z=0 .
$$

2. To find the equation of a line, we need a direction vector \mathbf{d} and a point P on the line. Then the parametrization is given by $\ell(t)=\overrightarrow{O P}+t \mathbf{d}$. For this problem, we can take P to be any point (x, y, z) that satisfies both equations simultaneously. For example, we can take $P=(2,0,1)$.

I found this point by arbitrarily setting the y coordinate to be 0 , and then solving the result system of linear equations.

Next, to find d, we note that since d parametrizes the line of intersection between these two planes, \mathbf{d} must be parallel to both planes, and therefore d must be orthogonal to both normal vectors $(2,-1,1)$ and $(1,1,-1)$. Therefore, we can take

$$
\mathbf{d}=(2,-1,1) \times(1,1,-1)=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & -1 & 1 \\
1 & 1 & -1
\end{array}\right|=(0,3,3) .
$$

Finally, we get a parametrization for the line:

$$
\ell(t)=(2,0,1)+t(0,3,3) .
$$

3. In the context of this problem, the composition function $(f \circ \mathbf{c})(t)$ is a function that tells us the light intensity at the eel's position at t seconds. We are then being asked to find $(f \circ \mathbf{c})^{\prime}(5)$. By the chain rule,

$$
(f \circ \mathbf{c})^{\prime}(5)=(\nabla f)(\mathbf{c}(5)) \cdot \mathbf{c}^{\prime}(5)
$$

A quick calculation shows

$$
\nabla f=\left(-\frac{1}{2} e^{-x / 2},-\frac{1}{3} e^{-y / 3},-\frac{1}{4} e^{-z / 4}\right)
$$

and therefore

$$
(\nabla f)(\mathbf{c}(5))=(\nabla f)(1,0,2)=\left(-\frac{1}{2} e^{-1 / 2},-\frac{1}{3},-\frac{1}{4} e^{-1 / 2}\right)
$$

Finally,

$$
(f \circ \mathbf{c})^{\prime}(5)=\left(-\frac{1}{2} e^{-1 / 2},-\frac{1}{3},-\frac{1}{4} e^{-1 / 2}\right) \cdot(3,9 \pi, 2)=-2 e^{-1 / 2}-3 \pi .
$$

4. (a) Let $\mathbf{c}(t)=(5 \cos (2 t), t, 5 \sin (2 t))$ be the position of the particle. Then the velocity vector is

$$
\mathbf{v}(t)=\mathbf{c}^{\prime}(t)=(-10 \sin (2 t), 1,10 \cos (2 t))
$$

Then the speed of the particle at time t is

$$
\|\mathbf{v}(t)\|=\sqrt{100 \sin ^{2}(2 t)+1+100 \cos ^{2}(2 t)}=\sqrt{101}
$$

Therefore, the total distance traveled from $t=0$ to $t=2 \pi$ is

$$
\int_{0}^{2 \pi} \sqrt{101} d t=2 \pi \sqrt{101}
$$

(b) The displacement between the position at $t=0$ and $t=2 \pi$ is equal to

$$
\mathbf{c}(2 \pi)-\mathbf{c}(0)=(5,2 \pi, 0)-(5,0,0)=(0,2 \pi, 0)
$$

5. Use the formula

$$
\theta=\cos ^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}\right)
$$

where θ is the (smallest) angle between the vectors \mathbf{u} and \mathbf{v}. You should get

$$
\begin{gathered}
\angle B A C=\cos ^{-1}\left(\frac{4}{\sqrt{14} \sqrt{19}}\right) \\
\angle A C B=\cos ^{-1}\left(\frac{-4}{5 \sqrt{19}}\right) \\
\angle C B A=\cos ^{-1}\left(\frac{2}{\sqrt{14}}\right)
\end{gathered}
$$

6. (a) $g_{x}(-3,4,5)=-2, g_{y}(-3,4,5)=1, g_{z}(-3,4,5)=2$.
(b) The maximum rate of change is $\|\nabla g(-3,4,5)\|=\sqrt{4+1+4}=3$.
(c) We are being asked to find the directional derivative of g at $(-3,4,5)$ in the direction of the difference vector $(-1,8,1)-(-3,4,5)=$ $(2,4,-4)$. We must normalize this vector to get the vector

$$
\mathbf{u}=\frac{1}{\sqrt{4+16+16}}(2,4,-4)=\frac{1}{6}(2,4,-4)=\frac{1}{3}(1,2,-2)
$$

Finally, we just have to take the dot product with the gradient

$$
\left[D_{\mathbf{u}} f\right](-3,4,5)=(\nabla g)(-3,4,5) \cdot \mathbf{u}=(-2,1,2) \cdot \frac{1}{3}(1,2,-2)=-\frac{4}{3}
$$

7. This integral is evaluated over the region in the $x y$-plane where $0 \leq$ $y \leq 2, y / 2 \leq x \leq 1$. If you fix an x-value, and find the bounds of y in terms of x, we see that this region can also be described as $0 \leq x \leq 1$, $0 \leq y \leq 2 x$. If we switch the order of integration, we get

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{2 x} y e^{x^{3}} d y d x & =\int_{0}^{1}\left(\left.\frac{1}{2} y^{2} e^{x^{3}}\right|^{y=2 x}\right) d x \\
& =\int_{0}^{1} 2 x^{2} e^{x^{3}} d x \\
& =\int_{0}^{1} \frac{2}{3} e^{u} d u \\
& =\frac{2}{3}(e-1) .
\end{aligned}
$$

8. Clarification: The girth of the bag is the perimeter of the side of the bag given in the picture.
Let x, y, and z be the length, width, and height of the bag respectively. Since the girth plus the length has to be at most 90 inches, we get the constraint function

$$
x+2 y+2 z=90 .
$$

Notice that I have $x+2 y+2 z=90$ and not $x+2 y+2 z / l e 90$ because obviously we will get the maximal volume when we have equality. Since the volume of the bag is $V(x, y, z)=x y z$, we must maximize the function $V(x, y, z)$ subject to the constraint $x+2 y+2 z=90$ using the method of Lagrange multipliers for example. (Note: the constraint is not bounded. The students in this class were told that they did not have to prove that their answer was indeed a maximum.) Let $g(x, y, z)=x+2 y+2 z$. Then the gradient of g is never zero, and therefore we have to solve the Lagrange equation

$$
\nabla V=\lambda \nabla g
$$

A simple calculation shows that this equation is

$$
(y z, x z, x y)=\lambda(1,2,2)
$$

Thus, we have the system of equations:

$$
\begin{aligned}
\text { I: } & y z & =\lambda \\
\text { II: } & x z & =2 \lambda \\
\text { III: } & x y & =2 \lambda \\
\text { IV: } & x+2 y+2 z & =90 .
\end{aligned}
$$

If we solve for lambda in each of these equations, we get $\lambda=y z=$ $x z / 2=x y / 2 \Longrightarrow 2 y z=x z=y x$. These equations tell us that $x=2 y$ and $z=y$ (Note: none of the variables can be 0 in the context of this problem). Substituting back into equation IV:, we get $2 y+2 y+2 y=$ $90 \Longrightarrow y=15 \Longrightarrow z=15$ and $x=30$. Therefore, we get one critical point: $(20,15,15)$. Though it is a bit tough to prove, it should not be hard to convince yourself that these dimensions must give you a maximum volume.

