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1. In order to find the equation of any plane, we need a point, P0 =

(x0, y0, z0), on the plane, and a vector
−→
N = (a, b, c), that is normal to

the plane. If we have these two pieces of information, then the equation
of the plane is:

ax+ by + cz = d

where d =
−→
N ·
−−→
OP0.

For this problem, we can take P = (1, 1, 1) to be the point on the
plane since P is on the first line, and therefore it is on the plane. To
find a vector that is orthogonal to the plane, we will first find two
vectors parallel to the plane, and then take their cross product. Notice
that the direction vector d = (1, 2, 3) is parallel to the plane, and the
difference vector u = (1, 2, 3)− (1, 1, 1) = (0, 1, 2) is on the plane since
this vector connects a point on line 1 to a point on line 2 (draw a picture
to convince yourself why this works). Therefore, we take

N = d× u =
i j k
1 2 3
0 1 2

= (1,−2, 1).

Finally, we get the equation

x− 2y + z = (1,−2, 1) · (1, 1, 1) =⇒ x− 2y + z = 0.

2. To find the equation of a line, we need a direction vector d and a point

P on the line. Then the parametrization is given by `(t) =
−→
OP + td.

For this problem, we can take P to be any point (x, y, z) that satisfies
both equations simultaneously. For example, we can take P = (2, 0, 1).
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I found this point by arbitrarily setting the y coordinate to be 0, and
then solving the result system of linear equations.

Next, to find d, we note that since d parametrizes the line of intersec-
tion between these two planes, d must be parallel to both planes, and
therefore d must be orthogonal to both normal vectors (2,−1, 1) and
(1, 1,−1). Therefore, we can take

d = (2,−1, 1)× (1, 1,−1) =
i j k
2 −1 1
1 1 −1

= (0, 3, 3).

Finally, we get a parametrization for the line:

`(t) = (2, 0, 1) + t(0, 3, 3).

3. In the context of this problem, the composition function (f ◦ c)(t)
is a function that tells us the light intensity at the eel’s position at t
seconds. We are then being asked to find (f ◦c)′(5). By the chain rule,

(f ◦ c)′(5) = (∇f)(c(5)) · c′(5).

A quick calculation shows

∇f =

(
−1

2
e−x/2,−1

3
e−y/3,−1

4
e−z/4

)
and therefore

(∇f)(c(5)) = (∇f)(1, 0, 2) =

(
−1

2
e−1/2,−1

3
,−1

4
e−1/2

)
.

Finally,

(f ◦ c)′(5) =

(
−1

2
e−1/2,−1

3
,−1

4
e−1/2

)
· (3, 9π, 2) = −2e−1/2 − 3π.

4. (a) Let c(t) = (5 cos(2t), t, 5 sin(2t)) be the position of the particle.
Then the velocity vector is

v(t) = c′(t) = (−10 sin(2t), 1, 10 cos(2t)).
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Then the speed of the particle at time t is

‖v(t)‖ =
√

100 sin2(2t) + 1 + 100 cos2(2t) =
√

101.

Therefore, the total distance traveled from t = 0 to t = 2π is∫ 2π

0

√
101dt = 2π

√
101.

(b) The displacement between the position at t = 0 and t = 2π is
equal to

c(2π)− c(0) = (5, 2π, 0)− (5, 0, 0) = (0, 2π, 0).

5. Use the formula

θ = cos−1
(

u · v
‖u‖‖v‖

)
where θ is the (smallest) angle between the vectors u and v. You should
get

∠BAC = cos−1
(

4√
14
√

19

)
,

∠ACB = cos−1
(
−4

5
√

19

)
,

∠CBA = cos−1
(

2√
14

)
6. (a) gx(−3, 4, 5) = −2, gy(−3, 4, 5) = 1, gz(−3, 4, 5) = 2.

(b) The maximum rate of change is ‖∇g(−3, 4, 5)‖ =
√

4 + 1 + 4 = 3.

(c) We are being asked to find the directional derivative of g at (−3, 4, 5)
in the direction of the difference vector (−1, 8, 1) − (−3, 4, 5) =
(2, 4,−4). We must normalize this vector to get the vector

u =
1√

4 + 16 + 16
(2, 4,−4) =

1

6
(2, 4,−4) =

1

3
(1, 2,−2).

Finally, we just have to take the dot product with the gradient

[Duf ](−3, 4, 5) = (∇g)(−3, 4, 5)·u = (−2, 1, 2)· 1
3

(1, 2,−2) = −4

3
.
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7. This integral is evaluated over the region in the xy-plane where 0 ≤
y ≤ 2, y/2 ≤ x ≤ 1. If you fix an x-value, and find the bounds of y in
terms of x, we see that this region can also be described as 0 ≤ x ≤ 1,
0 ≤ y ≤ 2x. If we switch the order of integration, we get∫ 1

0

∫ 2x

0
yex

3
dydx =

∫ 1

0
(1
2
y2ex

3|y=2x
y=0 )dx

=
∫ 1

0
2x2ex

3
dx

=
∫ 1

0
2
3
eudu

= 2
3
(e− 1).

8. Clarification: The girth of the bag is the perimeter of the side of the
bag given in the picture.

Let x, y, and z be the length, width, and height of the bag respectively.
Since the girth plus the length has to be at most 90 inches, we get the
constraint function

x+ 2y + 2z = 90.

Notice that I have x+ 2y + 2z = 90 and not x+ 2y + 2z/le90 because
obviously we will get the maximal volume when we have equality. Since
the volume of the bag is V (x, y, z) = xyz, we must maximize the func-
tion V (x, y, z) subject to the constraint x + 2y + 2z = 90 using the
method of Lagrange multipliers for example. (Note: the constraint
is not bounded. The students in this class were told that they did
not have to prove that their answer was indeed a maximum.) Let
g(x, y, z) = x + 2y + 2z. Then the gradient of g is never zero, and
therefore we have to solve the Lagrange equation

∇V = λ∇g.

A simple calculation shows that this equation is

(yz, xz, xy) = λ(1, 2, 2).

Thus, we have the system of equations:

I: yz = λ
II: xz = 2λ
III: xy = 2λ
IV: x+ 2y + 2z = 90.
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If we solve for lambda in each of these equations, we get λ = yz =
xz/2 = xy/2 =⇒ 2yz = xz = yx. These equations tell us that x = 2y
and z = y (Note: none of the variables can be 0 in the context of this
problem). Substituting back into equation IV:, we get 2y + 2y + 2y =
90 =⇒ y = 15 =⇒ z = 15 and x = 30. Therefore, we get one
critical point: (20, 15, 15). Though it is a bit tough to prove, it should
not be hard to convince yourself that these dimensions must give you
a maximum volume.

5


