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1. (a) In order to find the equation of any plane, we need a point, P0 =

(x0, y0, z0), on the plane, and a vector
−→
N = (a, b, c), that is normal

to the plane. If we have these two pieces of information, then the
equation of the plane is:

ax+ by + cz = d

where d =
−→
N ·
−−→
OP0.

For this problem, we can take P = (1, 1, 1) to be the point on the
plane. To find a vector that is orthogonal to the plane containing

the triangle, we can use
−→
N =

−→
PQ ×

−→
PR.

−→
N is normal the plane

because it is orthogonal to
−→
PQ and

−→
PR, which are both vectors

in the plane. We calculate:
−→
PQ =

−→
OQ−

−→
OP = (1, 2, 3)− (1, 1, 1) = (0, 1, 2),

−→
PR =

−→
OR−

−→
OP = (0, 1, 1)− (1, 1, 1) = (−1, 0, 0).

Then

−→
N =

i j k
0 1 2
−1 0 0

= (0,−2, 1).

Finally, the equation of the plane is

0x− 2y + 1z = (0,−2, 1) · (1, 1, 1) =⇒ −2y + z = −1.

(b) Recall that for any pair of vectors u and v in R3, ‖u × v‖ is the

area of the parallelogram that u and v span. Since
−→
PQ and

−→
PR

are two sides of the triangle, the area of the triangle is given by

1

2
‖
−→
PQ×

−→
PR‖ =

1

2
‖(0,−2, 1)‖ =

√
5

2
.
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2. (a) Since a(t) = v′(t), we have

a(t) = (2 cos(t2)− 4t2 sin(t2),−2 sin(t2)− 4t2 cos(t2), 2t).

(b) Since r′(t) = v(t), we can find r(t) by first integrating each compo-
nent with respect to t (this determines r(t) up to a constant vector
u. Then we use the initial condition r(0) = (1, 0, 1) to solve for
the constant. Using the substitution method of integration, we
see that

r(t) = (sin(t2), cos(t2),
1

3
t3 − t) + u

where u is a constant vector. By plugging in t = 0, we get

(1, 0, 1) = r(0) = (sin(0), cos(0), 0) + u = (0, 1, 0) + u.

Therefore, u = (1,−1, 1) which gives us

r(t) = (sin(t2), cos(t2),
1

3
t3 − t) + (1,−1, 1).

(c) We must use the arc length formula:

arc length from t = 1 to t = 2 =

∫ 2

1

‖v(t)‖dt.

Since

‖v(t)‖ =
√

(2t cos(t2))2 + (−2t sin(t2))2 + (t2 − 1)2

=
√

4t2(cos2(t2) + sin2(t2)) + (t2 − 1)2

=
√

4t2 + t4 − 2t2 + 1

=
√
t4 + 2t2 + 1

=
√

(t2 + 1)2

= t2 + 1,

the total distance traveled from t = 1 to t = 2 is∫ 2

1

t2 + 1dt = (
1

3
t3 + t)‖21 =

28

3
.
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3. We use implicit differentiation and differentiate both sides of the
equation with respect to x:

∂

∂x
(xez + zey) =

∂

∂x
(x+ y) =⇒

ez + xez
∂z

∂x
+
∂z

∂x
ey = 1 =⇒

∂z

∂x
=

1− ez

xez + ey
.

Note: This class used a different textbook where implicit differentia-
tion was emphasized more. In particular, using the chain rule, you can
show that if F (x, y, z) = xez + zey − x− y, then ∂z

∂x
= −Fx

Fz
.

4. Let F (x, y, z) = x2

4
+y2+ z2

9
. Then the ellipsoid is just the level surface

F (x, y, z) = 1. Therefore, the tangent plane to the surface at any point
(x, y, z) is normal to ∇F (x, y, z). This is because the gradient of
a function at a point is orthogonal to the level curve at the
point. We are looking for a point (x, y, z) where ∇F is parallel to
(1, 1, 1) (the normal vector for the plane x+ y + z = 1). We have

∇F = (
x

2
, 2y,

2z

9
).

If we want this vector to be parallel to (1, 1, 1), we need ∇F = k(1, 1, 1)
for some constant k. It is not hard to see that this condition forces the
equations

x

2
= 2y =

2z

9
=⇒ x = 4y and z = 9y.

Since the point (x, y, z) is also on the ellipsoid, we also have the equation

x2

4
+ y2 +

z2

9
= 1.

After substituting, we get

(4y)2

4
+ y2 +

(9y)2

9
= 1 =⇒ y = ± 1√

14
.

If we back-substitute into the equations x = 4y and z = 9y, we get two
points:

1√
14

(4, 1, 9) and
1√
14

(−4,−1,−9).
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5. (a) The formula for the equation for the tangent plane of the graph
of f at when (x, y) = (a, b) is given by the equation

z = f(a, b)
∂f

∂x
(a, b)(x− a) +

∂f

∂y
(a, b)(y − b).

In this problem (a, b) = (3, 4) (the x and y values). Since

∂f

∂x
=

x√
x2 + y2

and
∂f

∂y
=

y√
x2 + y2

,

we have

f(3, 4) =
√

32 + 42 = 5,
∂f

∂x
(3, 4) =

3

5
, and

∂f

∂y
(3, 4) =

4

5
.

Using the above formula, we get the equation

z = 5 +
3

5
(x− 3) +

4

5
(y − 4).

(b) Let L(x, y) = 5 + 3
5
(x− 3) + 4

5
(y− 4) be the linearization of f at

(3, 4). Since (3.1, 4.2) is very close to (3, 4), we have f(3.1, 4.2) ≈
L(3.1, 4.2) = 5+ 3

5
(3.1−1)+ 4

5
(4.2−4) = 5+ 3

5
(0.1)+ 4

5
(0.2) = 5.22.

6. (a) Lets us first normalize the vector v to get −→ev = 1√
3
(−1, 1, 1). Then

the direction derivative of f at P in the direction of v is given by
the formula:

Dvf(1, 1, 1) = ∇f(1, 1, 1) · −→ev.

Since ∇f(1, 1, 1) = (2xz,−2y, x2)|(x,y,z)=(1,1,1) = (2,−2, 1), we
have

Dvf(1, 1, 1) = (2,−2, 1) · 1√
3

(−1, 1, 1) =
−3√

3
.

Since the directional derivative is negative, the function is de-
creasing at P as you move in the v direction.
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(b) The direction of maximal rate of change for the function f at
P is ∇f(P ), and the maximum rate of change is ‖∇f(P )‖. In
this problem ∇f(P ) = (2,−2, 1). Therefore the maximum rate of
increase is ‖(2,−2, 1)‖ =

√
9 = 3.

7. To find the critical points of f , we need to find all points (x, y) where
∇f(x, y) = 0. I.e., we are looking for points where ∂f

∂x
= 0 and ∂f

∂y
= 0

simultaneously. Since ∇f = (4x3− 4y,−4x+ 4y), we need to solve the
system of equations

I: 4x3 − 4y = 0
II: −4x+ 4y = 0.

The second equation implies x = y. Plugging this back into equation
I gives us 4y3 − 4y = 4(y)(y − 1)(y + 1) = 0, which implies y = 0,
1, or −1. Since x = y, we get three critical points: (0, 0), (1, 1) and
(−1,−1). To check whether each critical point if a local maximum,
local minimum, or a saddle point of f , we use the second derivative
test. If we calculate second order partial derivatives, we get

∂2f

∂x2
= 12x2,

∂2f

∂y2
= y, and

∂2f

∂x∂y
= −4.

We can now calculate the discriminant of f :

D(x, y) =
∂2f

∂x2
∂2f

∂y2
−
(
∂2f

∂x∂y

)2

=⇒

D(x, y) = (12x2)(4)− (−4)2 = 48x2 − 16.

For (0, 0), we have D(0, 0) < 0. Therefore f has a saddle point at

(0, 0). For (1, 1), D(1, 1) > 0 and ∂2f
∂x2

(1, 1) = 12 > 0. Therefore f
has a local minimum at (−1,−1). For (−1,−1), D(−1,−1) > 0 and
∂2f
∂x2

(−1,−1) = 12 > 0. Therefore f has a local minimum at (−1,−1).

8. (a) Notice that the constraint function describes an ellipse. Since f
is continuous, and the constraint is a closed and bounded subset
of R2, the Extreme Value Theorem guarantees that f attains
its maximum and minimum values on the ellipse 4x2 + 9y2 = 36.
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(b) Let g(x, y) = 4x2 + 9y2. Notice that ∇g = (8x, 18y) = 0 only
at the point (0, 0). Since (0, 0) does not satisfy the constraint
4x2 + 9y2 = 36, we can disregard this point. We must therefore
move on to solving the Lagrange equation

∇f = λ∇g

where λ is a real number. Since ∇f = (2xy, x2), the Lagrange
equation becomes

(2xy, x2) = λ(4x, 18y).

This gives us the system of equations

I: 2xy = 4λx
II: x2 = 18λy
III: 4x2 + 9y2 = 36

.

From equation I, we get xy = 2λx, which implies either x = 0 or
λ = y/2.

If x = 0, then equation III implies 9y2 = 36 =⇒ y = ±2. There-
fore, we get two critical points (0, 2) and (0,−2). (Notice that if
x = 0, then equation II does not give us any contradictions.)

If λ = y/2, equation II becomes x2 = 9y2. Then plugging into
equation III, we get 4(9y2) + 9y2 = 36 =⇒ y2 = 4

5
=⇒ y =

± 2√
5
. Then since x2 = 9y2, we have four more critical points

( 6√
5
, 2√

5
), ( 6√

5
,− 2√

5
), (− 6√

5
, 2√

5
), and (− 6√

5
,− 2√

5
).

Now all you have to do is plug all five critical points back into
the function f . You should get that the maximum of f on this
constraint is 72

5
√
5

+ 1 and the minimum of f on this constrainst is

1− 72
5
√
5
.

9. (a) By switching the order of integration, we have∫ 1

0

∫ x

x2

sin(πy)
√
y − y

dydx =

∫ 1

0

∫ √y
y

sin(πy)
√
y − y

dxdy

Before reading the paragraph below, you should just draw a pic-
ture of the domain and try to understand how I got the bounds
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in the integral above.

To see this, notice that in the original integral, the domain is
described as {(x, y)|0 ≤ x ≤ 1, x2 ≤ y ≤ x}, which is the region
in the xy-plane that is bounded by the curves y = x and y = x2

(draw a picture!). To change the order of integration, we fix a
y-value and find the appropriate range for x in the domain. We
see that for a given y, y ≥ x ≤ √y. Since 0 ≤ y ≤ 1 for any point
(x, y) in the domain, we see that the domain can also be described
as {(x, y)|0 ≤ y ≤ 1, y ≤ x ≤ √y}, which gives us the bounds of
integration above.

(b) ∫ 1

0

∫ √y
y

sin(πy)√
y−y dxdy =

∫ 1

0

((
x sin(πy)√

y−y

)
|x=
√
y

x=y

)
dy

=
∫ 1

0
(
√
y − y) sin(πy)√

y−y dy

=
∫ 1

0
sin(πy)dy

= − 1
π

cos(πy)|y=1
y=0

= − 1
π
(cos(π)− cos(0))

= − 1
π
(−2)

= 2
π

10. Important note: This problem would be much easier (almost triv-
ial) if we had talked about double integration using polar coordinates.
However, that topic has been moved to Math 20E, and is no longer
required in 20C. For this problem, focus mainly on how to set up the
double integral.

That being said, we are looking for the double integral of f(x, y) =
4 − x2 − y2 over the domain D = {(x, y)|x2 + y2 ≤ 1}. Note that
D can also be described as the set of points (x, y) in the xy- plane
where −1 ≤ x ≤ 1 and −

√
1− x2 ≤ y ≤

√
1− x2. Therefore, we must

calculate the double integral

∫ 1

−1

∫ √1−x2
−
√
1−x2

4− x2 − y2dydx.

If we compute the inner integral, we have∫ √1−x2
−
√
1−x2

4−x2−y2dy = ((4−x2)y−1

3
y3) |

√
1−x2

y=−
√
1−x2= 2((4−x2)

√
1− x2−1

3
(1−x2)

3
2 .

7



Once we plug into the outer integral, we must calculate

∫ 1

−1
2((4− x2)

√
1− x2 − 1

3
(1− x2)

3
2dx

Which can be done using the substitution x = sin(θ). You should get
7π
2

.

In case you were curious, if you convert this integral to polar coordinates
you get ∫∫

D

4− x2 − y2dA =

∫ 2π

0

∫ 1

0

4r − r3drdθ

which is much easier.
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