\$1.1: 2,5, 8, 16, 18, 23, 24, 26, 28.

3(133, -0.33, 0) + (-399, 0.99, 0) = (3.133, 3.(-0.33), 0) + (-399, 0.99, 0) = (399, -0.99, 0) + (-399, 0.99, 0) = (399 - 399, -0.99 + 0.99, 0) = (399 - 399, -0.99 + 0.99, 0) = (0,0,0)

8 Similar to 5, but in R3.

16 To describe the line, we just need:

(1) A point, p, on the line, and
(2) A "direction vector", d, for the line.

Here, $\vec{l}_o = (0, 2, 1)$, $\vec{d} = 2\vec{i} - \vec{k}$ = (2, 0, -1).

Therefore, the line can be described by:

(vector form):
$$\vec{l}(t) = \vec{OP}_0 + t\vec{d}$$

 $\vec{l}(t) = (0,2,1) + t(2,0,-1)$

(parametric eqn form):

$$X = 2t$$
 $y = 2$
 $z = 1 - t$

18 This time P. = (-5,0,4) (or ?.=(6,-3,2)).

For the direction vector, we can use the vector from (-5,0,4) to (6,-3,2):

$$\vec{d} = (6, -3, 2) - (-5, 0, 4)$$

= $(11, -3, -2)$

Then the line is given in vector form by $\overrightarrow{l}(t) = \overrightarrow{O_1} + t \cdot \overrightarrow{d}$ $\overrightarrow{l}(t) = (-5, 0, 4) + t(11, -3, -2).$

Let's draw the picture in R2 since it is easier to visualize.

Use the "head to tail"
geometric description of
vector addition:
We see that the

redar AB+DC+CA Starts and ends at the point A. Since the

head and tool of this vector are the same, we have $\overrightarrow{AB} + \overrightarrow{bC} + \overrightarrow{CA} = \overrightarrow{B}$.

24
$$l(t)$$
 intersects the xy -plane when the z -component is 0. This happens when $-2+t=0 \Rightarrow t=2$.

So The line intersects the
$$xy$$
-plane at $\vec{l}(2) = (3 + 2(2), 7 + 8(2), -2 + 2)$
= $(7, 23, 0)$

To find the intersection with the XZ-plane (resp. yZ-plane), set y=0 (resp. X=0) and do a similar thing as above.

Substitute there into the expression:

5x -3y - Z-6=0, and see what happens.

$$5(|+2t) - 3(-|+3t) - (2+t) - 6 = 0$$

$$5 + 10t + 3 - 9t - 2 + t - 6 = 0$$

$$(5+3-2-6) + (10-9+1)t = 0$$

$$0 = 0$$

Since this is true for all real #s, t, we are done.

$$(\underbrace{t+4}, \underbrace{4t+5}, \underbrace{t-2}) = (\underbrace{2s+3}, \underbrace{s+1}, \underbrace{2s-3}).$$

This implies:
$$0 + 4 = 2s + 3$$

 $0 + 4t + 5 = s + 1$

$$6)$$
 $t-2=2s-3$

Using 3:
$$t-2=2s-3 \Rightarrow t=2s-1$$

Plug into 2: $4+5=s+1 \Rightarrow 4(2s-1)+5=s+1 \Rightarrow 3$

This shows that the y-coords and the z-coords match when
$$S=0$$
, $4=-1$.

We plag into 1) to see if the X-coords also visted when S=0, t=-1.

$$t+4=2s+3 \Rightarrow -1+4=2(0)+3 \Rightarrow 3=3$$

Therefore, the lines intersect when S=0, t=-1. The point of intersection is than!

$$(t+4, 4t+5, t-2) = (-1+4, 4(-1)+5, -1-2)$$

= $(3, 1, -3)$

\$1.2: 4, 9, 11, 13, 15, 17, 20, 23, 29

Hint: the identitys $\vec{u} \cdot \vec{v} = ||\vec{u}||^2$ $\vec{u} \cdot \vec{u} = ||\vec{u}||^2$

are crucial!

If
$$\vec{v} = \frac{\vec{u}}{\|\vec{v}\|}$$
, we have:
$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \left(\frac{\vec{u}}{\|\vec{v}\|}\right)$$

$$= \frac{1}{\|\vec{v}\|} \left(\vec{v} \cdot \vec{v}\right)$$

$$= \frac{\|\vec{v}\|^2}{\|\vec{v}\|}$$

$$= \|\vec{v}\|$$
Now Since $\vec{v} = \sqrt{3} \vec{v} - 315\vec{j} + 2\vec{v}$

Now since $\vec{u} = \sqrt{3}\vec{i} - 315\vec{j} + 22\vec{k}$ = $(\sqrt{3}, -315, 22)$, we have: $\vec{u} \cdot \vec{v} = ||\vec{u}|| = ((\sqrt{5})^2 + (-315)^2 + (22)^2)^{\frac{1}{2}}$ = $\sqrt{99712}$

•
$$\|\vec{u}\| = \sqrt{(-1)^2 + 3^2 + 1^2} = \sqrt{11}$$

• $\|\vec{v}\| = \sqrt{(-1)^2 + (-3)^2 + (-7)^2} = \sqrt{62}$
• $\vec{v} : \vec{v} = (-1)(-2) + (3)(-3) + (1)(-7)$

・
$$\vec{v} \cdot \vec{v} = (-1)(-2) + (5)(-3) + (1)(-7)$$

= 2-9-7

	,			
IT 2	0 11.	7. 上プ		び.マ=0
11 2 1	11(2(41).	$u \perp v$	ith	W.V -0

We want to find b, c values for which $(5, b, c) \cdot (1, 2, 3) = 0$ and $(5, b, c) \cdot (1, -2, 1) = 0$

From (1), we get:
$$5+2b+3c=0$$
 \Rightarrow $2b+3c=-5$
From (2): $5-2b+c=0$ \Rightarrow $-2b+c=-5$

Solve this system of equs:

Add the equations to get
$$4c=-10$$

 $=$ $c=\frac{-5}{2}$

plug back into either ezh to get

Since vi.
$$\vec{J} = ||\vec{J}|| ||\vec{J}|| \cos(\Theta)$$
 where Θ is the Orgha between \vec{u} and \vec{J} , and \vec{J} , and $\vec{J} = -||\vec{J}|| ||\vec{J}||$, we have:

is and it point in operate directions

To find Θ , use $\vec{N} \cdot \vec{d} = ||\vec{N}|| ||\vec{d}|| \cos \Theta \Rightarrow$ $4 = (1) \left(\sqrt{17} \right) \cos \Theta \Rightarrow$ $\theta = \cos^{-1} \left(\frac{4}{15} \right)$