$\$ 1.1: 2,5,8,16,18,23,24,26,28$.
2

$$
\begin{aligned}
& 3(133,-0.33,0)+(-399,0.99,0)= \\
& (3 \cdot 133,3 \cdot(-0.33), 0)+(-399,0.99,0)= \\
& (399,-0.99,0)+(-399,0.99,0)= \\
& (399-399,-0.99+0.99,0)= \\
& (0,0,0)
\end{aligned}
$$

5

8 Similar to 5 , but in \mathbb{R}^{3}.
(16) To describe the line, we just ned:
(1) A point, p_{0}, on the line, and
(2) A "direction vector", $\vec{\alpha}$, for the lime.

Here, $P_{0}=(0,2,1), \vec{d}=2 \vec{\imath}-\vec{k}$

$$
=(2,0,-1) .
$$

Therefore, the line can be described by:
(vector form): $\vec{l}(t)=\overrightarrow{\sigma P}_{0}+t \vec{d}$

$$
\vec{l}(t)=(0,2,1)+t(2,0,-1)
$$

(parametric eqn form):

$$
\begin{aligned}
& x=2 t \\
& y=2 \\
& y_{z}=1-t
\end{aligned}
$$

18 This time $P_{0}=(-5,0,4) \quad$ (or $P_{0}=(6,-3,2)$.
For the direction vector, we can use the vector from $(-5,0,4)$ to $(6,-3,2)$:

$$
\begin{aligned}
\vec{d} & =(6,-3,2)-(-5,0,4) \\
& =(11,-3,-2)
\end{aligned}
$$

Then the live is given in vector form by

$$
\begin{aligned}
& \vec{l}(t)=\overrightarrow{O P}+t \vec{d} \\
& \vec{l}(t)=(-5,0,4)+t(11,-3,-2)
\end{aligned}
$$

23 Let's draw the picture in \mathbb{R}^{2} since it is easier to visualize.

Use the "head to tail" geometric description of veer addition:
We see that the vector $\overrightarrow{A D}+\overrightarrow{D C}+\overrightarrow{C A}$ starts and ends at the point A. Since the head and tai of this vector are the same, we have $\quad \overrightarrow{A B}+\overrightarrow{B C}+\vec{C}=\overrightarrow{0}$.
$24 \quad \vec{l}(t)$ intersects the $x y$-plane when the z-component is 0 . This happens when

$$
-2+t=0 \Rightarrow t=2
$$

So The line intersects the $x y$-plane at

$$
\begin{aligned}
\vec{l}(2) & =(3+2(2), 7+8(2),-2+2) \\
& =(7,23,0)
\end{aligned}
$$

To f ind the intersection with th $x z$-plane (resp. $y z$-plane), set $y=0$ (resp. $x=0$) and do a similar thing as above.
26 Every point on the line satisfies:

$$
\left.\begin{array}{l}
x=1+2 t \\
y=-1+3 t \\
z=2+t
\end{array}\right\}\left(\begin{array}{l}
\text { switch to paramelven } \\
\text { equs. }
\end{array}\right.
$$

Substitute these into the expression: $5 x-3 y-z-6=0$, and see what happens.

$$
\begin{array}{ll}
& 5(1+2 t)-3(-1+3 t)-(2+t)-6=0 \\
\Leftrightarrow & 5+10 t+3-9 t-2+t-6=0 \\
\Leftrightarrow & (5+3-2-6)+(10-9+1) t=0 \\
\Leftrightarrow & 0=0
\end{array}
$$

Since this is true for all real \#s, t, we are done.

28 If the lines intersect, them we can find a t-value and an s-value s.t.:

$$
\left(\frac{t+4}{x}, \frac{4 t+5}{y}, \frac{t-2}{z}\right)=(\frac{2 s+3}{x}, \underbrace{s+1}_{y}, \frac{2 s-3}{z}) .
$$

This implies: (1) $t+4=2 s+3$
(1) $4 t+5=s+1$
(3) $t-2=2 s-3$
$u_{\text {sing (3): } \quad t-2=2 s-3 \Rightarrow t=2 s-1}$
plug into (2):

$$
\begin{array}{cc}
4 t+5=s+1 & \Rightarrow \\
4(2 s-1)+s=s+1 & \Rightarrow \\
8 s-4+5=s+1 & \Rightarrow \\
7 s+1=1 & \Rightarrow \\
s=0
\end{array}
$$

plug back into $t=25-1$, we get $t=-1$
This shows that the y-coords and the z-coords match when $s=0, t=-1$.

We plug into (1) to see if the x-coords also noted when $s=0, t=1$.

$$
\begin{array}{rlrl}
t+4 & =2 s+3 \\
-1+4 & =2(0)+3 & \Rightarrow \\
3 & =3
\end{array}
$$

Therefore, the lines intersect when $s=0, t=-1$.
The point of intersection is than:
$t-1$.

$$
\begin{aligned}
(t+4,4 t+5, t-2) & =(-1+4,4(-1)+5,-1-2) \\
& =(3,1,-3)
\end{aligned}
$$

\$1.2: $4,9,11,13,15,17,20,23,29$
Hint: the identity are crucial!

4 If $\vec{v}=\frac{\vec{u}}{\|\vec{u}\|}$, we have:

$$
\begin{aligned}
\vec{u} \cdot \vec{v} & =\vec{u} \cdot\left(\frac{\vec{u}}{\|\vec{u}\|}\right) \\
& =\frac{1}{\|\vec{u}\|}(\vec{u} \cdot \vec{u}) \\
& =\frac{\|\vec{u}\|^{2}}{\|\vec{u}\|} \\
& =\|\vec{u}\|
\end{aligned}
$$

Now since $\vec{u}=\sqrt{3} \vec{i}-315 \vec{j}+22 \vec{k}$

$$
=(\sqrt{3},-315,22),
$$

we have: $\vec{u} \cdot \vec{v}=\|\vec{u}\|=\left((\sqrt{3})^{2}+(-315)^{2}+(22)^{2}\right)^{1 / 2}$

$$
=\sqrt{99712}
$$

$9 \quad \vec{u}=(-1,3,1), \quad \vec{v}=(-2,-3,-7)$.

$$
\text { - } \begin{aligned}
\|\vec{u}\| & =\sqrt{(-1)^{2}+3^{2}+1^{2}}=\sqrt{11} \\
-\|\vec{v}\| & =\sqrt{\left(-22^{2}+(-3)^{2}+(-7)^{2}\right.}=\sqrt{62} \\
\cdot \vec{u} \cdot \vec{v} & =(-1)(-2)+(3)(-3)+(1)(-7) \\
& =2-9-7 \\
& =-14
\end{aligned}
$$

III

$$
\begin{aligned}
& \|\vec{u}\|=\frac{\sqrt{14}}{\sqrt{26}} \\
& \|\vec{v}\|=\frac{17}{\vec{u} \cdot \vec{v}=-17}
\end{aligned}
$$

(13) Recall: $\vec{u} \perp \vec{v}$ iff $\vec{u} \cdot \vec{v}=0$

We want t. find b, c values for which
(1) $\quad\left\{\begin{array}{l}(5, b, c) \cdot(1,2,3)=0 \\ (5, b, c) \cdot(1,-2,1)=0\end{array}\right.$ and

From (1), we get: $5+2 b+3 c=0 \quad \Rightarrow$ $2 b+3 c=-5$
From (2): $\quad 5-\frac{2 b+c=0}{-2 b+c=-5} \Rightarrow$
Solve this system of ezus:
Add the equation to gt $4 c=-10$

$$
\Rightarrow c=\frac{-5}{2}
$$

plug back into either $e z^{4}$ to got

$$
b=\frac{5}{4}
$$

15 Since $\vec{u} \cdot \vec{v}=\|\vec{v}\|\|\vec{v}\| \cos (\theta)$ where θ is the angle between \vec{u} and \vec{v}, and since $\vec{u} \cdot \vec{v}=-\|\vec{u}\|\|\vec{v}\|$, we have:

$$
\cos \theta=-1 \Rightarrow \theta=\pi
$$

\vec{U} and \vec{v} point in opposite directions

17 Let's just find the angle between the vedas
We have (from before)

$$
\begin{aligned}
& \|\vec{u}\|=\sqrt{11} \\
& \|\vec{v}\|=\sqrt{62} \\
& \vec{u} \cdot \vec{v}=-14
\end{aligned}
$$

Using $\quad \vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta$, we see,

$$
\frac{-14=(\sqrt{11})(\sqrt{62}) \cos \theta}{\theta=\cos ^{-1}\left(\frac{-14}{\sqrt{11}(\sqrt{62})}\right) \cdot} \Rightarrow
$$

20 Recall: $\operatorname{proj}_{\vec{v}}(\vec{u})=\left(\frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{j}}\right) \vec{v}$.
We have: $\vec{u} \cdot \vec{v}=-4$

$$
\begin{gathered}
\vec{v} \cdot \vec{v}=14 . \\
\Rightarrow \quad \operatorname{proj} \vec{v} \frac{(\vec{u})}{}=\left(\frac{-4}{14}\right)(2,1,-3) \\
= \\
=\left(\frac{-4}{7}, \frac{-2}{7}, \frac{6}{7}\right)
\end{gathered}
$$

23

If the Δ is equilateral, $\theta=60^{\circ}$. Since $\|\vec{v}\|=\|\vec{b}\|=1$, we have $\vec{v} \cdot \vec{t}=\|\vec{v}\|\|\vec{u}\| \cos \theta$

$$
=(1)(1) \cos \left(60^{\circ}\right)
$$

$$
=\frac{1}{2}
$$

[29]

there, \vec{N} is a vector pointing north.
S. let $\vec{N}=(0,1)$.
\vec{d} is the vector from $(1,0)$ to $(2,4)$.

$$
\begin{aligned}
\vec{d} & =(2,4)-(1,0) \\
& =(1,4) .
\end{aligned}
$$

To find θ, use

$$
\begin{aligned}
\vec{N} \cdot d & =\|\vec{N}\|\|d\| \cos \theta \Rightarrow \\
4 & =(1)(\sqrt{17}) \cos \theta \Rightarrow \\
\theta & =\cos ^{-1}\left(\frac{4}{\sqrt{17}}\right)
\end{aligned} \Rightarrow
$$

