§4.1: $5,6,7,8,12,13,15,19,20^{\circ}$.
For 5-8: $\vec{c}_{1}(t)=\left(e^{t}, \sin t, t^{3}\right) \Rightarrow \vec{c}_{1}^{\prime}(t)=\left(e^{t}, \cot , 3 t^{2}\right)$

$$
\vec{c}_{2}(t)=\left(e^{-t}, \cos t,-2 t^{3}\right) \Rightarrow \vec{c}_{2}^{\prime}(t)=\left(-e^{t},-\sin t,-6 t^{2}\right)
$$

(5). 1 ${ }^{\text {th }}$ woy: $\vec{c}_{1}(t)+\vec{c}_{2}(t)=\left(e^{t}+e^{-t}, \sin t+\right.$ ort,$\left.-t^{3}\right)$

$$
\frac{d}{d t}\left(\vec{c}_{1}(t)+\vec{a}_{1}(t)\right)=\left(e^{t}-e^{i t}, \cos t-\sin t,-3 t^{2}\right),
$$

$2^{\text {no }}$ way (wing ruke): $\frac{d}{d t}\left(\vec{c}_{1}(t)+\vec{c}_{2}(t)=\vec{c}_{1}^{\prime}(t)+\vec{c}_{2}^{\prime}(t)\right.$

$$
\begin{aligned}
& =\left(e^{t}, \cos t, 3 t^{2}\right)+\left(-e^{t}-\sin t,-6 t^{2}\right) \\
& =\left(e^{t}-e^{-t}, \cos t-\sin t,-3 t^{2}\right) \leq .
\end{aligned}
$$

(6) 1^{16} way:

$$
\begin{aligned}
& \vec{c}_{1}(t) \cdot \vec{c}(t)=\left(e^{t}\right)\left(e^{-t}\right)+\left(\operatorname{cost}\left(S_{n} t\right)-2 t^{6}\right. \\
& =1+\cos t \sin t t^{2}-2 t^{6} \\
& \Rightarrow \frac{d}{d t}\left(\vec{c}_{c}(t) \cdot \vec{c}_{i}(t)=-12 t^{5}-\sin ^{2} t+\cos ^{2} t\right. \text {. }
\end{aligned}
$$

2^{21} wog (wing yades):

$$
\begin{aligned}
& \frac{d}{d t}\left(\vec{c}_{1}(t) \cdot \vec{a}_{c}(t)\right)=\left(\vec{c}_{1}^{\prime}(t) \cdot \vec{c}_{2}(t)\right)+\left(\vec{c}_{c}(t) \cdot \vec{c}_{2}^{\prime}(t)\right) \\
& =\left(\left(e^{t}, \cos t, 3 t^{t}\right) \cdot\left(e^{-t},\left(a t,-2 t^{\prime}\right)\right)+\left(\left(e^{t}, \sin t t^{3}\right) \cdot\left(-e^{t},-\sin t,\left(t^{2}\right)\right)\right.\right. \\
& =1+\cos ^{2} t-6 t^{5}+\left(-1-\sin ^{2}(t)-6 t^{2}\right) \\
& =-12 t^{5}-\sin ^{2} t+\cos ^{2} t
\end{aligned}
$$

$$
\begin{aligned}
& \text { (7) } 1^{\text {st }} \text { wji } \vec{c}_{(t)} \times \overrightarrow{c_{2}}(t)=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
e^{t} & \text { s.t } & t^{3} \\
e^{-t} & \cos t & -2 t^{3}
\end{array}\right| \\
& =\left(-2 t^{3} \sin t-t^{3} \cos t, t^{3} e^{-t}+2 t^{3} e^{t}, e^{t} \cos t-e^{-t} \sin t\right) \\
& =\left(t^{3}(-2 \sin t-\cos t), t^{3}\left(e^{-t}+2 e^{t}\right), e^{t} \cos t-e^{-t} \sin t\right) \\
& \frac{d}{d t}\left(\overrightarrow{c_{1}}(t) \times \overrightarrow{\varepsilon_{i}}(t)\right)=\left(3 t^{2}(-2 \sin t-\cos t)+t^{3}(-2 \cos t+\sin t)\right) \vec{i}+\left(3 t^{2}\left(e^{-t}+r^{2}\right)+t^{3}\left(-e^{-t}-2 e^{t}\right)\right) \vec{j} \\
& +\left(\cot \left(e^{t}-e^{-t}\right)+\sin t\left(e^{t}-e^{t}\right)\right) \vec{k}
\end{aligned}
$$

2^{11} way (wing marks)! $\frac{d}{d t}\left(\vec{c}_{1}(t) \times \vec{c}_{2}(t)\right)=\left(\vec{c}_{1}^{\prime \prime}(t) \times \vec{c}_{1}(t)\right)+\left(\vec{C}_{1}(t) \times c_{2}^{\prime}(t)\right)$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & k^{2} \\
e^{t} & \cos t & 3 t^{2} \\
e^{-t} & \cos t & -2 t^{3}
\end{array}\right|+\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
e^{t} & \sin t & t^{3} \\
-e^{-t} & -\sin t & -6 t^{2}
\end{array}\right| \\
& =\left(-2 t^{3} \cos t-3 t^{2} \cos t, 3 t^{2} e^{-t}+2 t^{3} e^{t}, e^{t} \cos t-e^{-t}(\cot)+\right. \\
& \left(-6 t^{2} \sin t+t^{3} \sin t,-t^{3} e^{-t}+6 t^{2} e^{t},-e^{t} \sin (t)+e^{-t} \sin (t)\right)
\end{aligned}
$$

(theirs the same.).

$$
\text { (8) Is wog: } \begin{aligned}
&\left\{\vec{c}_{1}(t) \cdot\left[2 \vec{c}_{1}(t)+\vec{c}_{1}(t)\right]\right\}=\left(e^{t}, \sin t, t^{3}\right) \cdot\left(2 e^{-t}+e^{t}, 2 \cos t+\sin t,-3 t^{3}\right) \\
&=\left(e^{t}\right)\left(2 e^{-t} r e^{t}\right)+(\sin t)(2 \cos t+\sin t)-3 t^{6} \\
&=2+e^{2 t}+2 \sin t \cos t+\sin ^{2} t-3 t^{6} \\
& \frac{d}{d t}\left\{\vec{c}_{1}(t) \cdot\left[2 \vec{c}_{2}(t)+\vec{c}_{1}(t)\right]\right\}=2 e^{2 t}+2 \cos ^{2} t-2 \sin ^{2} t+2 \sin t \cos t-18 t^{5} .
\end{aligned}
$$

Lng way: $\quad \vec{C}_{1}(t) \cdot\left[2 \vec{C}_{2}(t)+\vec{C}_{1}(t)\right]$

$$
\begin{aligned}
& \frac{d}{d t}\left(\overrightarrow{C_{1}} \cdot\left[2 \vec{C}_{2}(t)+\vec{c}_{1}(t)\right]\right)=\left(\vec{C}_{1}^{\prime}(t) \cdot\left(2 \overrightarrow{c_{2}}(t)+\overrightarrow{c_{1}}(t)\right)\right)+\left(\overrightarrow{c_{1}}(t) \cdot\left(2 z_{2}^{\prime}(t)+\vec{C}_{1}^{\prime}(t)\right)\right. \\
= & \left(\left(e^{t}, \cos t, 3 t^{2}\right) \cdot\left(2 e^{-t}+e^{t}, 2 \cos t+\sin t,-3 t^{3}\right)\right)+\left(\left(e^{t}, \sin t, t^{3}\right) \cdot\left(-2 e^{-t} e^{t},-2 \sin t+\cos t,-9 t^{2}\right)\right) \\
= & \left(2+e^{2 t}+2 \cos ^{2} t+\cos t \sin t-9 t^{5}\right)+\left(-x+e^{2 t}-2 \sin ^{2} t+\sin t \cos t-9 t^{5}\right) \\
= & 2 e^{2 t}+2 \cos ^{2} t-2 \sin ^{2} t+2 \sin t \cos t-18 t^{5}
\end{aligned}
$$

(12) $\vec{c}(0)=(3,4,0), \vec{v}(0)=(1,1,-2) \quad \vec{a}(t)=(0,0,6)$

$$
\vec{v}^{\prime}(t)=(0,0,6) \Rightarrow \vec{v}(t)=(0,0,6 t)+\overrightarrow{u_{1}}, \vec{u} \underset{\text { vector. }}{\text { vent }}
$$

$$
\begin{aligned}
& \vec{v}(0)=(1,1,-2) \Rightarrow(1,1,-2)=(0,0,0)+\vec{u}_{1} \\
& \Rightarrow \vec{u}_{1}=(1,1,-2) \\
& \Rightarrow \vec{v}(t)=(1,1,6 t-2) .
\end{aligned}
$$

Now $\quad c^{\prime}(t)=(1,1,6 t-2)$
integrate $\Rightarrow \vec{c}(t)=\left(t, t, 3 t^{2}-2 t\right)+\vec{u}_{2}, \vec{u}_{2}$ a constant vector.

$$
\begin{aligned}
& \vec{c}(0)=(3,4,0) \\
& \Rightarrow \quad(3,4,0)=\left(0,0,3(0)^{2}-2(0)\right)+\vec{u}_{2} \\
& \overrightarrow{\vec{e}_{2}}=(\quad 3,4,0) \\
& \Rightarrow \quad \vec{c}(t)=\left(t+3, t+4,3 t^{2}-2 t\right)
\end{aligned}
$$

(13)

$$
\begin{aligned}
& \vec{a}(t)=(2,-6,-4), \vec{v}(0)=(-5,1,3), \vec{r}(0)=(6,-2,1) \\
& \vec{a}(t)=(2,-6,-4) \Rightarrow \vec{v}(t)=(2 t,-6 t,-4 t)+\vec{u}_{1}, \overrightarrow{u_{1}} \text { cont. } \\
& \vec{v}(0)=(-5,1,3) \\
& \Rightarrow(-5,1,3)=(2(0),-6(0),-4(0))+\vec{u}_{1} \\
& \Rightarrow \quad \vec{u}_{1}=(-5,1,3) \\
& \Rightarrow \vec{v}(t)=(2 t-5,-6 t+1,-4 t+3) .
\end{aligned}
$$

Now $\vec{r}(t)=\left(t^{2}-5 t,-3 t^{2}+t,-2 t^{2}+3 t\right)+\overrightarrow{u_{2}}, \quad \overrightarrow{u_{2}}$ coast.

$$
\begin{array}{ll}
& \vec{r}(d=(6,-2,1) \Rightarrow \\
& (6,-2,1)=(0,0,0)+\vec{u}_{2} \\
\Rightarrow \quad & \overrightarrow{u_{2}}=(6,-2,1) \\
\Rightarrow & \vec{r}(t)=\left(t^{2}-5 t+6,-3 t^{2}+t-2,-2 t^{2}+3 t+1\right) .
\end{array}
$$

$\vec{r}(t)$ intersects $y z$-plane when $x=0 \Rightarrow t^{2}-5 t+6=0$

$$
\begin{aligned}
& \Rightarrow \quad(t-3)(t-2)=0 \\
& \Rightarrow \quad t=3 \text { or } 2 .
\end{aligned}
$$

So the two points are: $\vec{r}(2)=(0,-12,-1)$

$$
\vec{P}(3)=(0,-26,-8)
$$

15

$$
\begin{aligned}
& \vec{r}(t)=\left(6 t, 3 t^{2}, t^{3}\right) \\
& \vec{v}(t)=\left(6,6 t, 3 t^{2}\right) \\
& \vec{a}(t)=(0,6,6 t) . \\
& \vec{a}(0)=(0,6,0) .
\end{aligned}
$$

\Rightarrow Farce at $t=0$ is $\vec{F}=m \overrightarrow{a(s)}=(0,6 m, 0)$
19）Assume $\vec{c}^{\prime \prime}(t) \perp \vec{c}^{\prime}(t)$ for all t ．
Note：－$\quad \underbrace{\| 己^{\prime}(t) d}_{\text {spae．}}$ is constant $\Leftrightarrow\left\|\vec{c}^{\prime}(t)\right\|^{2}$ is conilat．

$$
\text { We calculate } \begin{aligned}
\frac{d}{d t}\left(S\left(t^{\prime}\right)\right. & =\frac{d}{d t}\left(\left\|\vec{c}^{\prime}(t)\right\|^{2}\right) \\
& =\frac{d}{d t}\left(\vec{c}^{\prime}(t) \cdot 己^{\prime}(t)\right) \\
& =\left(\vec{c}^{\prime \prime \prime}(t) \cdot \vec{Z}^{\prime}(t)\right)+\left(\vec{Z}^{\prime}(t) \cdot \vec{C}^{\prime \prime}(t)\right) \\
& =2\left(己^{\prime \prime}(t) \cdot 己^{\prime}(t)\right) .
\end{aligned}
$$

Since $\quad \vec{c}^{\prime \prime}(t) \perp \vec{c}^{\prime}(t)$ for al t ，

$$
\begin{aligned}
\frac{d}{d t}\left(\left\|\vec{c}^{\prime}(t)\right\|^{2}\right) & =2\left(\vec{c}^{\prime \prime}(t) \cdot \vec{c}^{\prime}(t)\right) \\
& =0 .
\end{aligned}
$$

Now Since the derivative of $\left\|\vec{c}^{\prime \prime}(t)\right\|^{2}=0$ ，

$$
\left\|\vec{c}^{\prime}(t)\right\|^{2} \text { is constant } \Rightarrow \quad s(t)=\left\|z^{\prime \prime}(t)\right\| \text { is }
$$ constant．

20）The $f_{C n}\|\vec{r}(t)\|$ is a function from \mathbb{R} to \mathbb{R} ．
Therefore，$\|\vec{r}(t)\|$ has extreme values when $\frac{d}{d t}\left(\left\|\vec{r}^{\prime}(t)\right\|\right)=0$ （at critical points）
but

$$
\begin{aligned}
\frac{d}{d t}(\|\vec{r}(t)\|) & =\frac{d}{d t}\left(\sqrt{\vec{r}^{\prime}(t) \cdot \vec{r}(t)}\right) \\
& \left.=\frac{1}{2 \sqrt{P_{p}(t) \cdot \vec{r}}(t)}\left(\left(\vec{r}^{\prime}(t) \cdot \vec{r}^{\prime}(t)\right)+\vec{r}(t) \cdot \vec{r}^{\prime}(t)\right)\right) \\
& =\frac{\vec{r}^{\prime}(t) \cdot \vec{r}(t)}{\|\vec{r}(t)\|} \\
& =\frac{\left\|\vec{r}^{\prime}(t)\right\|\|\vec{r}(t)\| \cos \theta}{\|\vec{r}(t)\|} \\
& =\left\|\vec{r}^{\prime}(t)\right\| \cos \theta
\end{aligned}
$$

when θ is the ogle betwom $\vec{r}(t), \vec{r}(t)$.
Thus, $\quad \frac{d}{d t}\left(\left\|r^{z}(t)\right\|\right)=0 \Longleftrightarrow\left(\cos \theta=0\right.$ or $\left.\| r^{\prime}(\|)=0\right) \Leftrightarrow \theta=90^{\circ}$.
$\Rightarrow \| r(t\| \|$ has extreme value at points where

$$
\vec{r}^{\prime}(t) \perp \vec{r}^{\prime}(t) .
$$

