a.

1. $P_{0}=$

$$
=30 \quad(\mathrm{mg})
$$

Since the hulf-life is 6 yeses, after 6 yeas you have half as nuns as you stonal with
Theffy, we have
$P(G)=\frac{1}{2}(30)$
So

$$
\begin{array}{lll}
& & 30 b^{6}=\frac{1}{2}(30) \\
\Rightarrow & b^{6}=\frac{1}{2} \\
\Rightarrow & b=\left(\frac{1}{2}\right)^{\frac{1}{6}}
\end{array}
$$

5. $P(t)=30\left(\frac{1}{2}\right)^{\frac{t}{6}}$
1.6.) We mad to solus

$$
P(t)=\frac{(0.05)}{7} \underbrace{30}
$$

5\% of intis votes
So $\quad 30\left(\frac{1}{2}\right)^{\frac{t}{t}}=(0.05)(36)$

$$
\begin{aligned}
& \left(\frac{1}{2}\right)^{\frac{t}{6}}=0.05 \\
& \frac{t}{6}=\log _{\frac{1}{2}}(0.05) \\
& t=6 \log _{\frac{1}{2}}(0.05)
\end{aligned}
$$

$2 a$

$$
\begin{array}{ll}
\text { a. } & 2 \log _{x}(2)+\log _{x}(9)=2 \\
\Rightarrow & \log _{x}\left(2^{2}\right)+\log _{x}(9)=2 \\
\Rightarrow & \log _{x}(4)+\log _{x}(9)=2 \\
\Rightarrow & \log _{x}(36)=2 \\
\Rightarrow & x^{2}=36 \\
\Rightarrow & x=6
\end{array}
$$

(Notice x caid be negtin beccuse the base f a \log is >0 i. this c(x) .
(26)

$$
\begin{aligned}
& e^{x x}+e^{x}=6 \\
& e^{x}+e^{x}-6=0 \\
& \left(e^{x}\right)^{2}+e^{x}-6=0 \\
& u^{2}+u-6=0 \\
& (u+3)(u-2)=0 \\
& u=-3 \text { or } u=2 \\
& u^{x}-3 \text { or } e^{x}=2
\end{aligned}
$$

$$
\underset{\text { Thinposisle }}{\uparrow} \quad \Rightarrow x=\ln (2)
$$

(3a)

$$
\begin{aligned}
-x+4 y & =-4 \\
2 x+y & =0
\end{aligned}
$$

u sing substitutio,

$$
\begin{gathered}
-x+4 y=-4 \\
\Rightarrow \quad 4 y=x-4 \\
\Rightarrow \quad x=4 y+4
\end{gathered}
$$

$$
\begin{gathered}
2 x+y=0 \\
\Rightarrow \quad 2(4 y+4)+y=0 \\
\Rightarrow \quad 8 y+8+y=0 \\
\Rightarrow \quad 9 y+8=0 \\
\Rightarrow \quad 9_{y}=-8 \\
\Rightarrow y=\frac{-8}{9} \\
\Rightarrow \quad x=4\left(\frac{-8}{9}\right)+4\left(\frac{9}{9}\right) \\
= \\
=\frac{-32}{9}+\frac{35}{9} \\
= \\
=\frac{4}{9}
\end{gathered}
$$

One sol. $\left(\frac{4}{9},-\frac{8}{9}\right)$
(saying $x=\frac{4}{4}$ and $y=\frac{-8}{9}$ is final.
(36) No, a satem of two live equs with two
various can hame eith

$$
\begin{aligned}
& 0 \text { solutions } \\
& 1 \text { solution or } \\
& \text { infinitely may saltine }
\end{aligned}
$$

(4a) To connet fram dey. to rad. multiry by $\frac{\pi}{196}$.

$$
\begin{aligned}
& 540^{\circ}=540^{\circ}\left(\frac{\pi r a d}{180^{\circ}}\right)=3 \pi \mathrm{rad} \text { (bath numuth } \\
& \text { are divisibl. } \\
& \text { by } 90 \text {) }
\end{aligned}
$$

(4) To go fram rad. to dey., multifly by

$$
\begin{gathered}
\left(\frac{180^{\circ}}{\pi \text { rad. }}\right. \\
\left(\frac{11 \pi}{12} \operatorname{rad}\right)\left(\frac{180^{\circ}}{\pi \mathrm{rad}}\right)=\left(\frac{11}{12}\right)(180)=(11)(15) \\
=1 \widehat{65^{\circ}}
\end{gathered}
$$

(5a) Pythagaci.

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

Since $\sin (6)=\frac{2}{3}$,

$$
\left(\frac{2}{3}\right)^{2}+\cos ^{2}(\theta)=1
$$

$$
\left.\begin{array}{rl}
\frac{4}{9}+\cos ^{2}(\theta) & =1 \\
\cos ^{2}(\theta) & =1-\frac{4}{9} \\
\cos ^{2}(\theta) & =\frac{5}{9} \\
\cos (\theta) & =-\sqrt{\frac{5}{9}} \\
\cos (\theta) & =-\frac{\sqrt{5}}{3}
\end{array} \quad \begin{array}{l}
\text { (ince } \cos \theta<0 \text {, by } \\
\text { assurpatin, we kna } \\
\cos (\theta)=-\sqrt{\frac{5}{9}}, \text { not } \sqrt{\frac{5}{9}}
\end{array}\right)
$$

(5b) Dras the radius correspoading to $\frac{-5 \pi}{6}$ radins
16 Warning'. If it doesn't specify a unit, assums its in radions

A1so, $\frac{-S_{\pi}}{6}=-150^{\circ}$

So $\left.\cos (\theta)=-\frac{\sqrt{3}}{2}\right)$

The "refereme" ange is 30°, so the tricagh in th pictum is a " 30°, 60, $90^{\circ "}$ triongls. The point comespanding to $-\frac{5 \pi}{6}$ is $\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$

